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A B S T R A C T   

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of coronavirus 
disease 2019 (COVID-19) since December 2019 that has led to more than 160 million confirmed cases, including 
3.3 million deaths. To understand the mechanism by which SARS-CoV-2 invades human cells and reveal organ- 
specific susceptible cell types for COVID-19, we conducted comprehensive bioinformatic analysis using public 
single-cell RNA sequencing datasets. Utilizing the expression information of six confirmed COVID-19 receptors 
(ACE2, TMPRSS2, NRP1, AXL, FURIN and CTSL), we demonstrated that macrophages are the most likely cells 
that may be associated with SARS-CoV-2 pathogenesis in lung. Besides the widely reported ‘chemokine storm’, 
we identified ribosome related pathways that may also be potential therapeutic target for COVID-19 lung 
infection patients. Moreover, cell-cell communication analysis and trajectory analysis revealed that M1-like 
macrophages showed the highest relation to severe COVID-19 patients. And we also demonstrated that up- 
regulation of chemokine pathways generally lead to severe symptoms, while down-regulation of ribosome and 
RNA activity related pathways are more likely to be mild. Other organ-specific susceptible cell type analyses 
could also provide potential targets for COVID-19 therapy. This work can provide clues for understanding the 
pathogenesis of COVID-19 and contribute to understanding the mechanism by which SARS-CoV-2 invades human 
cells.   

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has 
caused a global pandemic of coronavirus disease 2019 (COVID-19) since 
December 2019 [1–3]. Similar to the other two members of the β 
coronavirus genus, i.e., severe acute respiratory syndrome coronavirus 
(SARS-CoV [4]) and Middle East respiratory syndrome coronavirus 
(MERS-CoV [5]), SARS-CoV-2 can lead to not only serious respiratory 
tract diseases but also damage to many other human organs [6–8]. As of 
May 2021, no effective antiviral for COVID-19 is available, and 
COVID-19 has caused more than 3.3 million global deaths according to 
the World Health Organization (WHO). Hence, there is an urgent need to 
understand the physiological and pathological mechanisms by which 
SARS-CoV-2 infects humans. Various studies have demonstrated that a 
glycosylated spike (S) protein of coronavirus plays a key role in the 
process of cell entry [9,10]. As a cell entry receptor of SARS-CoV [11], 

angiotensin-converting enzyme 2 (ACE2) has also been proven to be an 
important entry receptor for SARS-CoV-2 [1]. Previous studies have 
elucidated that the spike protein can bind with the ACE2 receptor in the 
receptor binding domain (RBD), and the spike protein is primed by the 
serine protease TMPRSS2 [12]. Utilizing the expression value of ACE2 in 
single cell data, Dey et al. identified several cell types susceptible to the 
virus and PPAR signaling pathway as key regulator during infection 
[13]. 

However, single-cell RNA sequencing data have revealed that the 
expression of ACE2 is very low in most human tissues [14]. This in
dicates that other receptors may exist for target cell entry due to the 
rapid and multiorgan infection of COVID-19. Recently, many studies 
have reported several candidate receptors that may facilitate 
SARS-CoV-2 entry. Cantuti-Castelvetri et al. reported that neuropilin-1 
(NRP1) could facilitate SARS-CoV-2 cell entry and may serve as a po
tential target for drug development [15]. Wu et al. demonstrated that a 
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redundant furin cut site is responsible for the stronger infection of 
SARS-CoV-2 [16]. Zhao et al. reported that cathepsin L (CTCL) plays a 
crucial role during the process of SARS-CoV-2 infection [17]. Wei et al. 
found that scavenger receptor B type 1 (SR-B1) can act as a host factor 
and promote SARS-CoV-2 entry [18]. Wang et al. revealed that 
tyrosine-protein kinase receptor UFO (AXL) interacts with SARS-CoV-2 
[19]. 

Although various studies have elucidated the cell entry mechanism 
of ACE2 and TMPRSS2, little is known about the other newly discovered 
receptors. Since single-cell RNA sequencing technology has shown great 
advantages in biological studies [20–31], in this study, we utilized five 
single-cell RNA sequencing public datasets, each for a tissue vulnerable 
to COVID-19 infection (specifically, lung, heart, kidney, liver and 
bladder) [32,33]. Organ-specific susceptible cell types to SARS-CoV-2 
were identified, and in lung tissue, we demonstrated that 
up-regulation of chemokine pathways generally lead to severe symp
toms, while down-regulation of ribosome and RNA activity related 
pathways is more likely to be mild [34]. This work can provide clues for 
understanding the pathogenesis of COVID-19 and contribute to under
standing the mechanism by which SARS-CoV-2 invades human cells [35, 
36]. 

2. Material and methods 

2.1. Data resources 

Public single-cell RNA sequencing datasets were downloaded from 
the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/). 
The lung dataset used in this study was obtained as NO. GSE145926. 
This dataset contained the bronchoalveolar lavage fluid (BALF) of nine 
COVID-19 patients and three healthy controls. To be consistent with the 
authors [37], we also obtained other healthy lung scRNA-seq data from 
NO. GSM3660650 [38]. To explore the expression levels of these 
candidate receptors, we then utilized scRNA-seq datasets of four other 
healthy tissues to discover the highly expressed cell types. Specifically, 
healthy heart samples were acquired from NO. GSE109816 [39]. Five 
heathy liver samples of scRNA-seq data were acquired from NO. 
GSE115469 [40]. Three scRNA-seq samples of healthy human kidney 
were obtained from NO. GSE131685 [41]. Finally, we utilized three 
healthy bladder scRNA-seq datasets from NO. GSE129845 [42]. The 
details of all single-cell datasets used in this study was shown in Table 1. 

2.2. Dataset processing and analysis 

Seurat 3.0 was used to process and analyse the lung dataset [43]. 
Following the authors’ description, we removed low-quality cells by 
selecting feature numbers between 200 and 6000. Moreover, cells with a 
mitochondrial percentage >10% and library size <1000 were also 

identified. The data were normalized by the “NormalizeData” function 
with the “LogNormalize” method. A total of 2000 highly variable genes 
were obtained for each sample using the “vst” selection method in the 
“FindVariableFeatures” function. To correct the batch effect, we utilized 
the “FindIntegrationAnchors” function and integrated the COVID-19 
patients and healthy human samples together for further analysis. 
Principal component analysis (PCA) was utilized to find the k-nearest 
neighbours. The “FindClusters” function, which employs the “Louvain” 
algorithm, showed 31 clusters with a resolution parameter setting of 1.2 
[44]. The dimension reduction method UMAP (Uniform Manifold 
Approximation and Projection) was used for data visualization [45]. 
Based on these clusters, cell type annotation was carried out with ca
nonical marker genes. 

Downstream analysis started by finding the top 100 differentially 
expressed genes (DEGs) of the COVID-19 group and healthy group with 
the Seurat function “FindMarkers”. Differentially expressed genes 
(DEGs) were filtered by (p value <= 0.05 and q value <= 0.2) for 
enrichment analysis. The DEGs were further utilized for Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich
ment to identify biological pathways. The R package clusterProfiler 
(version 3.16.1) was used for enrichment analysis [46]. CellChat 
(version 1.1.0) was utilized for cell-cell communication analysis [47]. 
Gene set variation analysis (GSVA) analysis was conducted using R 
package GSVA (version 1.42.0), 50 hallmark gene sets in the Molecular 
Signatures Database (MSigDB) were utilized for enrichment [48]. We 
utilized Monocle 2 (version 2.18.0) for trajectory inference and Gen
eSwitches was used for identifying functional changes pathways [49, 
50]. 

The other four scRNA-seq datasets were also analysed similar to the 
process for the lung dataset. We have uploaded all of the code used in 
this study at GitHub (https://github.com/ZilongZhang44/COVID-19). 

3. Results 

3.1. Lung dataset 

Unsupervised clustering of the single-cell RNA sequencing lung 
dataset showed 31 clusters (Fig. 1A). Canonical marker genes provided 
by the authors were utilized for cell type annotation; subsequently, 
twelve cell types were identified, as shown in Fig. 1B. Fig. 1C shows the 
gene expression of the most important canonical marker genes, specif
ically TPPP3, KRT18, CD68, FCGR3B, CD1C, CLEC9A, LILRA4, TPSB2, 
CD3D, KLRD1, MS4A1 and IGHG4. Clusters 0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 
12, and 16 were annotated as macrophages with the canonical marker 
gene CD68. With CD3D, T cells were identified corresponding to clusters 
6, 9, 14 and 29. With TPP3 and KRT18, ciliated cells and secretory cells 
were annotated corresponding to cluster 13 and cluster 15, respectively. 
Cluster 18 was identified as NK cells with KLRD1, while cluster 19 was 
identified as neutrophil cells with FCGR3B. Cluster 21 was annotated to 
myeloid dendritic cells with marker genes CD1C and CLEC9A. Subse
quently, B cells and mast cells were annotated with MS4A1 and TPSB2, 
which corresponded to cluster 25 and cluster 30, respectively. With 
IFHG4, clusters 23 and 26 were identified as plasma cells. Cluster 24 was 
annotated as epithelial cells with marker genes TPPP3 and KRT18. 
Finally, plasmacytoid dendritic cells were identified as corresponding to 
cluster 28 with the marker gene LILRA4. 

Moreover, we divided the lung dataset into a COVID-19 group and a 
healthy group and compared the expression differences of all potential 
receptors mentioned above: ACE2, TMPRSS2, NRP1, AXL, FURIN and 
CTSL (SR-B1 gene was not detected). Fig. 1D illustrates significant 
expression differences in all 6 reported receptors, which is consistent 
with the original paper. As ACE2 and TMPRSS2 have already been 
investigated in many studies, we mainly focused on the expression of the 
most recently reported genes NRP1, AXL, FURIN and CTSL. As shown in 
Fig. 1D, in the COVID-19 group, NRP1 and AXL were downregulated, 
while FURIN and CTSL were upregulated. To explore specific cell types 

Table 1 
Summary of the datasets used in this study.  

Dataset GEO 
number 

Organ DOI URL 

GSE145926 
GSM3660650 

Lung 10.1038/s41591- 
020-0901-9 

https://www.nature. 
com/articles/s41591-020 
-0901-9 

GSE109816 Heart 10.1038/s41556- 
019-0446-7 

https://www.nature. 
com/articles/s41556-0 
19-0446-7 

GSE115469 Liver 10.1038/s41467- 
018-06318-7 

https://www.nature.co 
m/articles/s41467-01 
8-06318-7 

GSE131685 Kidney 10.1038/s41597- 
019-0351-8 

https://www.nature. 
com/articles/s41597-0 
19-0351-8 

GSE129845 Bladder 10.1681/ 
ASN.2019040335 

https://pubmed.ncbi.nlm. 
nih.gov/31462402/  
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vulnerable to SARS-CoV-2 infections in the lung, we then revealed the 
expression of receptors by cell type. Fig. 1E illustrates that all four of the 
latest reported receptors showed high expression in macrophages. 
Hence, we concentrated on macrophage cell types for further analysis. 

To reveal the heterogeneity among macrophages, the macrophages 
cells were further clustered into M1-like macrophages and M2-like 

macrophages based on the canonical marker genes FCN1, CCL2, CCL3 
and TREM2 (Fig. 2 A, C). Interestingly, we noticed that percentage of 
M1-like macrophages was highly correlated with COVID-19 progression. 
Specifically, M1-like macrophages only accounted for 0.2% of macro
phages in healthy control group, while increasing to 19.3% and 97.3% in 
medium COVID-19 cases and severe COVID-19 cases, respectively 

Fig. 1. Single-cell RNA sequencing analysis of the lung dataset. (A) Unsupervised clustering revealed 31 clusters in integrated lung dataset. (B) Cell type 
annotation was conducted and 12 cell types were identified. (C) Expression of canonical marker genes used for cell type annotation. (D) Expression differences in all 
6 reported receptors between COVID-19 patients and healthy controls. Y stands for COVID-19 patients, N stands for healthy controls. (E) Dot plot shows the 
expression of six receptors in all identified cell types. 
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Fig. 2. Macrophages subgroup classification. (A) All macrophages were further clustered into M1-like macrophages and M2-like macrophages. (B) The fraction of 
cells originated from different groups (Healthy controls, Medium patients and Severe patients). (C) Expression of canonical marker genes used for cell subtype 
annotation. (D) Enriched terms for each of three ontologies revealed by Gene Ontology (GO) enrichment results of M1-like macrophages. (E) Most enriched KEGG 
pathways revealed by differentially expressed genes of M1-like macrophages. 
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(Fig. 2 B). In addition, all M1-like macrophages were divided into a 
COVID-19 group and a healthy group, and differential gene expression 
analysis was applied between these two groups. Differentially expressed 
genes (DEGs) were filtered by (p value <= 0.05 and q value <= 0.2) for 
enrichment analysis. Fig. 2D showed the top 10 enriched Gene Ontology 
(GO) terms for each of three ontologies. Interestingly, besides the widely 
reported ‘chemokine storm’, ribosome related terms were strongly 
enriched. Strikingly, as shown in Fig. 2E, ribosome pathway was the 
greatest enrichment besides COVID-19 pathway. Collectively, ribosome 
pathway may be possible therapeutic target for COVID-19 lung infection 
patients. 

We then utilized CellChat to investigate cell-cell communication in 
COVID-19 patients [47]. Notably, M1-like macrophages showed signif
icantly interactions with T cells, Neutrophil and NK cells (Fig. 3A), and 
Fig. 3B revealed the dominant role of M1-like macrophages in COVID-19 
patients. These findings have also been verified by Lv et al. that M1-like 
macrophages could facilitate SARS-CoV-2 infection of the lungs by 
allowing the entry of SARS-CoV-2 RNA from the endosomes into the 
cytoplasm [51]. In addition, as shown in Fig. 3C, CellChat revealed three 
communication outgoing patterns. M1-like macrophages were grouped 
into pattern 1 and SPP1 (secreted phosphoprotein 1), NPR2 (Natriuretic 
Peptide Receptor 2) and CCL (Chemokine ligands) may be possible 
significant pathways. Moreover, GSVA software was utilized to identify 
differences in hallmark gene sets of Molecular Signatures Database 
(MSigDB) across different cell types [48,52–55]. As shown in Fig. 3D, 
complement pathway, KRAS_singaling pathway and Inflammatory 
response pathway are significantly enriched in M1-like macrophages, 
which may be considered as possible therapeutic targets for further 
study. 

Finally, we used Monocle 2 to investigate cell trajectory of macro
phages in COVID-19 patients [49]. Fig. 4A revealed two major cell tra
jectories (i.e., path1: from state 4 to state 3, and path2: from state 4 
through state 2 to state 1). Notably, we noticed that cell fates belong to 
path1 (states 4, 3) had a much higher severe rate than path2 (states 4, 2, 
1). Subsequently, we utilized GeneSwitches to discover functional 
events during cell state transitions [50]. Moreover, as shown in Fig. 4B, 
the top ten significantly changed pathways for path1 are strongly related 
to previous studies about COVID-19 severe patients, which included 
interferon alpha, cytokine and immune system. Strikingly, Fig. 4C 
revealed that the highest functional change pathways in path2 (states 4, 
2, 1) are related to ribonucleoprotein and RNA activity, which is 
consistent with enrichment analysis. Collectively, we demonstrated that 
up-regulation of Chemokine pathways generally lead to severe symp
toms, while down-regulation of ribosome and RNA activity related 
pathways is more likely to be mild. 

3.2. Heart dataset 

Cells in the heart dataset were grouped into 15 clusters, as shown in 
Fig. 5A. We then chose canonical marker genes (TECRL, VWF, LUM, 
LAPTM5 and RGS5) for biological annotation. The annotation processes 
and results are shown in Fig. 5B–C. Clusters 0, 5, 6 and 14 were iden
tified as endothelial cells by the marker gene VWF. With TECRL, clusters 
1, 2, 3, and 9 were identified as cardiomyocytes. Cluster 7 was annotated 
as fibroblasts by the marker gene LUM. With LAPTM5, clusters 10, 11 
and 13 were annotated as macrophages. Finally, clusters 4 and 8 were 
identified as smooth muscle cells using RGS5. Fig. 5D depicts possible 
heart-specific cell types vulnerable to COVID-19 by showing the gene 
expression conditions of potential receptors. We found that fibroblasts 
and smooth muscle cells had higher expression of almost all receptors, 
which indicates a high risk for COVID-19 infection. 

3.3. Kidney dataset 

We then reanalysed the expression profiles of COVID-19 receptors in 
a kidney dataset. Unsupervised clustering by Seurat illustrated 11 

clusters, as shown in Fig. 6A. The annotation step for the kidney dataset 
is shown in Fig. 6B–C. With the canonical marker genes LYZ and CD14, 
cluster 6 was annotated as monocytes. NK cells and T cells were iden
tified with GNLY, NKG7 and CD3D, which corresponded to cluster 5. 
Cluster 10 was identified as B cells by the CD79A and CD79B genes, while 
cluster 8 was annotated as distal tubule cells by the UMOD and DEFB1 
marker genes. With AQP2 and CLDN8, cluster 9 was identified as col
lecting duct cells. Cluster 11 was identified as collecting duct interca
lated cells by the ATP6V1G3 and ATP6V0D2 genes. The expression 
profiles of KRT8 and KRT18 indicated that cluster 7 corresponded to 
glomerular parietal epithelial cells. SLC22A8 and SLC22A7 were utilized 
to annotate cluster 4 and cluster 1 as proximal convoluted tubule cells 
and proximal straight tubule cells, respectively. Finally, clusters 2 and 3 
were identified as proximal tubule cells using marker genes DCXR and 
GPX3. Fig. 6D demonstrates that collecting duct cells and proximal tu
bule cells may be most vulnerable to COVID-19 infection. 

3.4. Liver dataset 

Similarly, we reanalysed liver scRNA-seq data. As shown in Fig. 7A, 
all cells were grouped into 22 clusters. With the canonical marker genes 
BCHE and G6PC, clusters 0, 1, 2, 17, 18 and 20 were identified as he
patocytes. Clusters 11, 12, and 13 were annotated as limbal epithelial 
stem cells (LESCs) by TM4SF1 and CCL14. With the marker genes KRT7 
and KRT19, cluster 15 was identified as cholangiocytes. Cluster 21 was 
identified as stellate cells by ACTA2 and RBP1, while cluster 7 was 
identified as inflammatory macs based on the expression profile of LYZ 
and HLA-DPB1. With CD5L, MARCO and VSIG4, noninflammatory macs 
were annotated corresponding to cluster 9. Clusters 6, 8 and 19 were all 
annotated as T cells; specifically, clusters 6 and 19 were identified as γδ 
T-cells by the marker genes GNLY and STMN1, while cluster 8 was 
identified as CD3+ αβ T-cells by GZMK. B cells were identified corre
sponding to cluster 14 by MS4A1 and CD37. Finally, plasma cells and 
erythroid cells were annotated corresponding to clusters 4 and 16 by 
IGHG1 and CA1, respectively (Fig. 7B–C). Fig. 7D demonstrates that 
overall, the most specific cell type that is vulnerable to COVID-19 is 
cholangiocyte, while stellate cells and noninflammatory macs cells may 
also be potential virus targets based on these four newly reported 
receptors. 

3.5. Bladder dataset 

For the bladder dataset, all cells were grouped into 19 clusters 
(Fig. 8A). The annotation processes are shown in Fig. 8B and C. Clusters 
1, 2, 3, and 5 were identified as base cells with genes KRT5 and KRT17. 
Intermediate cells were annotated with KRT13 corresponding to cluster 
4. With the canonical marker genes UPK1A and UPK1B, cluster 15 was 
annotated as umbrella cells. Interstitial cells were identified corre
sponding to cluster 17 by VIM. With ACTA2, cluster 15 was annotated as 
myofibroblasts. Cluster 8 was annotated as smooth muscle cells with the 
DES gene. With SELE and PECAM1, cluster 12 was identified as endo
thelial cells. Subsequently, T cells and B cells were identified corre
sponding to cluster 14 and cluster 18, respectively, by marker genes 
CD3D and MZB1. With the marker genes LYZ and MS4A7, cluster 13 was 
annotated as monocytes. Last, cluster 11 was annotated as fibroblasts 
with COL1A2. However, in Fig. 8D, it was difficult to determine the most 
vulnerable cell types to COVID-19, and further investigation is needed to 
obtain a convincing conclusion. 

4. Discussion 

As of May 2021, the COVID-19 global pandemic has caused more 
than 160 million confirmed cases, including 3.3 million deaths. Hence, 
there is an urgent need to understand the physiological and pathological 
mechanisms by which SARS-CoV-2 infects humans. In this study, we 
focused on the expression profiles of several reported receptors of SARS- 
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Fig. 3. Cell-cell communication analysis of macrophages. (A) Aggregated cell-cell communication network of total interaction strength (weights) between any 
two cell groups. (B) Signaling role analysis on the aggregated cell-cell communication network from all signaling pathways. (C) Global communication pattern of 
multiple cell types. (D) Gene set variation analysis (GSVA) for 50 hallmark gene sets in the Molecular Signatures Database (MSigDB). 
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Fig. 4. Trajectory inference of macrophages in COVID-19 patients. (A) Trajectory analysis results of macrophages in COVID-19 patients. (From left to right, cells 
were coloured by states, cell type, pseudotime and patient group, respectively.) (B) Top 10 significantly changed pathways ordered by the switching time of path1 
(states 4, 3). (C) Top 10 significantly changed pathways ordered by the switching time of path2 (states 4, 2, 1). 
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Fig. 5. Single-cell RNA sequencing analysis of the heart dataset. (A) Unsupervised clustering revealed 15 clusters in heart dataset. (B) Cell type annotation was 
conducted and 5 cell types were identified. (C) Expression of canonical marker genes used for cell type annotation. (D) Dot plot shows the expression of six receptors 
in all identified cell types. 
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Fig. 6. Single-cell RNA sequencing analysis of the kidney dataset. (A) Unsupervised clustering revealed 11 clusters in kidney dataset. (B) Cell type annotation 
was conducted and 10 cell types were identified. (C) Expression of canonical marker genes used for cell type annotation. (D) Dot plot shows the expression of six 
receptors in all identified cell types. 
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Fig. 7. Single-cell RNA sequencing analysis of the liver dataset. (A) Unsupervised clustering revealed 22 clusters in liver dataset. (B) Cell type annotation was 
conducted and 11 cell types were identified. (C) Expression of canonical marker genes used for cell type annotation. (D) Dot plot shows the expression of six receptors 
in all identified cell types. 
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Fig. 8. Single-cell RNA sequencing analysis of the bladder dataset. (A) Unsupervised clustering revealed 19 clusters in bladder dataset. (B) Cell type annotation 
was conducted and 11 cell types were identified. (C) Expression of canonical marker genes used for cell type annotation. (D) Dot plot shows the expression of six 
receptors in all identified cell types. 
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CoV-2 (specifically, ACE2, TMPRSS2, NRP1, AXL, FURIN and CTSL) in 
different organs. 

Since lung abnormalities are one of the most common symptoms for 
COVID-19 patients, we first explored the different expression profiles of 
potential receptors between COVID-19 patients and healthy donors 
[56]. As expected, all six receptors showed significant transcription 
differences upon infection with SARS-CoV-2. The mRNA expression 
levels of ACE2 and TMPRSS2 are highest in secretory cells and ciliated 
cells, which is consistent with other previous studies [14,57,58]. Inter
estingly, after focusing on observing the expression profiles of the other 
four newly confirmed receptors, we found that macrophages showed 
high expression levels of all of these receptors. Cell-cell communication 
analysis and trajectory inference were conducted to COVID-19 patients 
scRNA-seq data, which showed that M1-like macrophages were signifi
cantly associated with SARS-CoV-2 pathogenesis in lung. These results 
were consistent with a recent study which revealed M1 alveolar mac
rophages facilitate SARS-CoV-2 infection of the lungs [51]. GO and 
KEGG enrichment were conducted to M1-like macrophages, as expected, 
the GO enrichment results showed many virus-related pathways. 
Moreover, various GO terms related to cytokines, such as “cytokine 
activity” and “chemokine activity”, were also significantly enriched, 
which indicates the important role of the presence of so-called ‘cytokine 
storm’ [28,34,59]. Recent study by Jaggi et al. has also proven that M1 
macrophages played an essential role in blocking cytokine storm [60]. 
As we know, the “classically” activated M1-like macrophages are 
generally pro-inflammatory. Large proportion of M1-like macrophages 
in the lung could stimulate the SARS-CoV-2 associated cytokine storm, 
which may be the reason for the serious condition of severity patients. 
Excitingly, we also noticed that ribosome related pathways were also 
strongly enriched in both GO and KEGG enrichment, which may be 
potential therapeutic target for COVID-19 lung infection patients. 

Notably, we noticed that up-regulation of chemokine pathways 
generally lead to severe symptoms, while down-regulation of ribosome 
and RNA activity related pathways is more likely to be mild. Various 
studies have already revealed that due to the up-regulation of chemo
kine, which caused over-production of soluble markers of inflammation 
[28]. However, down-regulated ribosome pathways have been rarely 
discussed. As we know, ribosomes are complex molecular inside the 
living cells for producing proteins. Down-regulated of ribosomes may 
hinder the SARS-CoV-2 replication and inhibit the progression of the 
disease. Hence, ribosomes activity may be used as an indicator for 
COVID-19 disease assessment. 

As COVID-19 has been proven to cause many symptoms in tissues 
other than the lung, we then collected scRNA-seq data from the heart, 
kidney, liver and bladder in healthy donors [61]. We mainly focused on 
revealing the organ-specific susceptible cell types for SARS-CoV-2. In the 
heart dataset, fibroblasts and smooth muscle cells had high expression of 
all six confirmed receptors, which indicates that they may be potentially 
associated with SARS-CoV-2 pathogenesis. Similarly, collecting duct 
cells and proximal tubule cells may be associated with SARS-CoV-2 
infection in the kidney. For the liver, stellate cells and noninflamma
tory macs cells show the highest risk for SARS-CoV-2 infection. How
ever, for bladder single-cell data, it was difficult to identify the possible 
cell types, which need further investigation. 

5. Conclusion 

In summary, we reanalysed the public single-cell RNA sequencing 
dataset to understand the possible tropism of SARS-CoV-2. By compre
hensive bioinformatics analysis of a lung single-cell RNA sequencing 
dataset of COVID-19 patients and healthy donors, macrophages were 
identified as the most likely cells that may be associated with SARS-CoV- 
2 pathogenesis. Further analysis of macrophages in lung demonstrates 
that up-regulation of chemokine pathways generally lead to severe 
symptoms, while down-regulation of ribosome and RNA activity related 
pathways is more likely to be mild. Other organ-specific susceptible cell 

type analyses could also provide a potential target for COVID-19 therapy 
[62,63]. Of course, we admit that there are certain limitations, such as 
no experimental validation and limited receptor genes [64,65]. None
theless, our studies may provide potential clues for further investigation 
of the pathogenesis of COVID-19. 
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