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CPL-Diff: A Diffusion Model for De Novo Design of
Functional Peptide Sequences with Fixed Length

Zhenjie Luo, Aoyun Geng, Leyi Wei, Quan Zou, Feifei Cui,* and Zilong Zhang*

Peptides are recognized as next-generation therapeutic drugs due to their
unique properties and are essential for treating human diseases. In recent
years, a number of deep generation models for generating peptides have been
proposed and have shown great potential. However, these models cannot well
control the length of the generated sequence, while the sequence length has a
very important impact on the physical and chemical properties and
therapeutic effects of peptides. Here, a diffusion model is introduced, capable
of controlling the length of generated functional peptide sequences, named
CPL-Diff. CPL-Diff can control the length of generated polypeptide sequences
using only attention masking. Additionally, CPL-Diff can generate
single-functional polypeptide sequences based on given conditional
information. Experiments demonstrate that the peptides generated by
CPL-Diff exhibit lower perplexity and similarity compared to those produced
by the current state-of-the-art models, and further exhibit relevant
physicochemical properties similar to real sequences. The interpretability
analysis is also performed on CPL-Diff to understand how it controls the
length of generated sequences and the decision-making process involved in
generating polypeptide sequences, with the aim of providing important
theoretical guidance for polypeptide design. The code for CPL-Diff is available
at https://github.com/luozhenjie1997 /CPL-Diff.

1. Introduction

unique medications comprised of short
chains of amino acids with great poten-
tial in treating complex human diseases.!"]
These short peptides hold tremendous po-
tential in treating complex human dis-
eases due to their compact structure and
strong adaptability, promising to radically
alter therapeutic interventions for illnesses
caused by bacteria, fungi, parasites, and
viruses.l”) However, the current engineer-
ing paradigms for these peptides are pri-
marily based on high-throughput screen-
ing and rational design aimed at enhanc-
ing in vivo stability, solubility, and strain
specificity while reducing aggregation.]’]
Although the flexibility of peptides is ad-
vantageous for clinical research, it compli-
cates the design process since traditional
structure-based methods often struggle to
handle the dynamic and conformation-
ally unstable nature of these molecules.[*>]
Moreover, the combinatorial space of these
peptides is huge, of which again only a
small fraction of the solutions meets clin-
ical needs. Thus, this approach to screen-
ing, which is based on an approximation
of an exhaustive method, can be both time-
consuming and costly.

In recentyears, deep generative models (DGMs) have achieved

Therapeutic peptides, including antimicrobial peptides (AMPs),
antifungal peptides (AFPs), and antiviral peptides (AVPs) are

good results in generating images!®! and text,l’ and have gained
popularity in protein generation.!] For example, based on
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autoregressive methods, peptide sequences are depicted as sen-
tences composed of amino acid tokens, so that the problem can
be solved by predicting the amino acid arrangement through
recursive neural networks (RNNs).”) Methods based on varia-
tional autoencoders (VAEs) sample from the latent space learned
through the encoder-decoder architecture to generate new pep-
tide sequences, and treat therapeutic properties as conditional
constraints or not as conditional constraints.['%!") Methods based
on generative adversarial networks (GANs) use known data to
train generators and discriminators, which learn data distribu-
tion in a competitive manner, allowing the generator to gen-
erate new peptides that are close to the distribution of real
peptides.l?]

The diffusion generative model proposed by Sohl-Dickstein
et al.l3] has garnered significant attention due to its remarkable
performance in imagel'*'] and speech generation.!'®!’] Com-
pared to previous generative model technologies, diffusion mod-
els exhibit stronger capabilities in fitting data distributions, with
better convergence and more diverse generated samples.l'% For
example, Vinod et al.'¥] demonstrated the feasibility of devel-
oping a generative diffusion model by optimizing the func-
tion of downstream tasks and comparing pure sequence mod-
els, pure structure models, and sequence-structure joint models.
TaxDiff%! combines biological species information and the gen-
erative ability of diffusion models, inserting classification infor-
mation into each layer of the Transformer block to achieve fine
control, thereby guiding the diffusion model to generate struc-
turally stable proteins in sequence space. MMCDI?"! integrates
both sequence and structure modalities in the diffusion model
and aligns the information of these two modalities to enhance
the ability of the diffusion model to generate high-quality ther-
apeutic peptides, jointly generating new peptide sequences and
structures.

At the same time, the emergence of protein language mod-
els (pLMs) such as ESM-2,[2!l ProtT5,?2] and ProGen!®! has
significantly advanced our understanding and design capa-
bilities of proteins. Combining diffusion models with pLMs
can further enhance protein design capabilities. For example,
ForceGenl?*l combines ESM2 and uses diffusion models to gen-
erate latent space embeddings of protein sequences in ESM2.
By using the expected tensile force response curve as a condi-
tion, the generated proteins generally better meet the design
goals in terms of tensile force response. AMP-Diffusion!®! is
the first latent space diffusion pLM, which uses ESM2 8M
for its pLM and Tramsformer architecture for its denoising
structure to directly predict the original embedding. The gen-
erated AMPs show statistical robustness in multiple evalua-
tion metrics and physicochemical properties. ProT-Diffl?] has
demonstrated through wet experiments that combining diffu-
sion models and pLM can generate AMPs with strong antibacte-
rial activity, low hemolytic rate cytotoxicity, and broad-spectrum
efficacy.

However, these therapeutic peptide generation models do not
consider enforcing control over the length of the generated se-
quences, and most of the models for generating peptides are
trained using only one type of peptide. In fact, the length of the
peptide sequence has an important influence on the effect and
physical and chemical properties of the peptide. For example, the
length of the peptide chain of an AMP affects the hydrophobicity
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of the AMP, which in turn affects its antimicrobial and hemolytic
activities.””] As another example, the optimal peptide length for
MHC class II affinity is ~#18-20 amino acids; peptide elongation
beyond this length has no effect or negative impact on affinity.[?#!
If we cannot control the length of the generated sequences well,
it is possible to generate more sequences that do not meet the
expected requirements due to the stochastic nature of the gener-
ation model. Although it is currently possible to impose restric-
tions on the generated lengths by, for example, constructing clas-
sification distributions based on the sequence lengths of short
peptide datasets,[??) it is not an easy task to fit the corresponding
classification distributions better. If the fitting is not good, it is
possible that the length of the final sequence obtained is not the
length we expect. And most of the generative models currently
used to generate peptides are trained on only a single peptide
data. In reality, a single peptide may have multiple therapeutic
effects. If the generative model can capture the commonality of
these different types of peptides, then with only a little guidance
to the generative model, high quality peptide sequences of differ-
ent types can be generated.

In this paper, we propose a Transformer-based diffusion model
for generating therapeutic peptide sequences using pLM embed-
dings, named CPL-Diff. Specifically, we employ the ESM-2 pLM
as an encoder to obtain a continuous latent space embedding rep-
resentation of the protein sequence and introduce an attention
masking mechanism in our model so that our model only focuses
on the specified portion of the peptide sequence to ensure that the
generated peptide sequence is of the specified length. In the sam-
pling phase we use additional peptide category representations
to guide our model to generate therapeutic peptides with spec-
ified effects. After training, CPL-Diff can learn the amino acid
composition patterns and related physicochemical properties of
different peptides. Not only can it generate peptide sequences
of specified lengths according to our needs, but also its gener-
ated sequences have lower similarity and better physicochemical
properties.

We summarize the contributions of our work as follows.

® A diffusion model for the generation of therapeutic peptide
sequences using a masking mechanism CPL-Diff is proposed,
which enforces control over the length of the generated peptide
sequences without relying on any marginal distribution.

® Use conditional information to guide the generation of thera-
peutic peptides with different effects.

® Interpretability analysis of CPL-Diff’s ability to control the
length of generated sequences. And to quantitatively analyse
CPL-Diff, we predicted the structure of the sequence generated
by CPL-Diff and performed simulated docking experiments.

2. Methodology

In this part, we propose the problem of controlling the length
of generated sequences in diffusion models. Subsequently, we
will detail the various components of the CPL-Diff method, in-
cluding the diffusion model for polypeptide generation, the at-
tention mask control strategy for generating sequence length,
and the guided generation strategy. Figure 1 is an overview of
CPL-Diff.

© 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH

85UB017 SUOWILIOD BA 181D 3|qeotjdde 8y} Aq pauenof a1e Sapiie O ‘88N JO S9IN1 10} ARG 1T 8UIIUO AB|IA UO (SUORIPUOD-PUR-SLLBYW0D" A8 | 1M ARR1q 1 BUIIUO//SANY) SUORIPUOD PUe WS L 8L} 89S *[5202Z/0T/ET] U0 A%iqI BUIIUO AB]IM ‘9262T20Z SAPR/Z00T OT/I0p/W0D" A8 1M ARiq Ul juo’paoueApe//SdNY WO} papeo|umoq ‘02 ‘G202 ‘V8E86TE


http://www.advancedsciencenews.com
http://www.advancedscience.com

ADVANCED
sﬂ%‘ﬁ%@ﬁéﬁs SCIENCE

www.advancedsciencenews.com www.advancedscience.com

Build model

#  Freeze Parameters

. Attention mask M # |
v [L[t[t]..JoJO]
2
S I
= I
v Peptide tokens -xl Xr
S [6]12]6]..[1]1] | A I
= ESM2 e i

encoder

Model structure

pd B Timestep 7 | Label y IXl

4 //———__Q ————————— a4 Mask N ) (Embdf] “Layer
= A ROtary B (® % " ,e ~_norm
} 5 4

L Input Scale & ( Layer

|
|
Noised Shift norm 4
= \\ — : \ az MaSl\ ' 1
: | T ‘
,—i—\ | gy = )
L ]
( Condition | | MLP J | ~.  Denoiser
- - |
\

= Block
\ .--..-..J

Peptide sequence generation

Interpretive analysis

Attention mask M
T{1]1]...]0]0 |emy

Chnssian ke Denoising process

Xr

Peptide type

' MIRWIKKWWR

Figure 1. Overview of CPL-Diff. The red box shows the training process. We first convert the sequences into tokens as well as the corresponding
Attention masks. Then, the latent space embeddings of the peptide sequences are extracted using the pre-trained ESM2. The peptide category labels are
probabilistically eliminated for the purpose of combining conditional and unconditional diffusion into one model. In the diffusion process, Gaussian
noise is introduced into these latent space embeddings. In the inverse process, the denoiser is trained, and the denoiser is used to reconstruct the noise-
disturbed latent space embeddings. The attention mask and category labels are used as guidance information. The blue box shows the architecture of the
denoiser. The denoiser mainly consists of the Multi-head Attention Layer and the MLP. The denoiser receives four inputs, i.e., the noise-disturbed latent
space embedding, the timestep t, the Attention mask, and the category label y. The purple box shows the sampling process. Sampling starts with pure
Gaussian noise, using an Attention mask to control the length of the generated peptide sequence and to provide the type of peptide to be generated. After
denoising is complete, the generated latent space embedding is decoded using the ESM2 language model header to obtain a new peptide sequence.
Finally, the Attention weight matrix of CPL-Diff is extracted and combined with simulated docking experiments for interpretability analysis.
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2.1. Problem Definition

We consider the design of polypeptide sequences as finding
a sequence w = [w]",, where w; € {ACDEFGHIKLMNPQRS
TVWY} is the type of the ith amino acid, and L is the length of
the sequence. Our goal is to establish a distribution model for
w based on known polypeptide sequences, and sample from this
distribution according to a given sequence length L, ultimately
generating a new polypeptide sequence of a specified length.

Peptide sequence design can be achieved by establishing a
trained language model p,, (w) from known peptide sequences,
and then extracting a new sequence w from this model, where
P (W) is the probability distribution of word sequences. Control-
lable polypeptide sequence generation refers to the task of ex-
tracting a new sequence w from a conditional distribution p(w|y),
where y represents the control condition.

2.2. Advantages of Diffusion Models in Protein Generation

In the Introduction part, we provided a brief overview of the ap-
plications of mainstream generative models in sequence gener-
ation. In this part, we present a theoretical analysis to elucidate
the superiority of diffusion models over other mainstream gen-
erative models in the context of protein generation.

Generative models based on RNNs and its variants have been
implemented in protein design tasks for both generative and dis-
criminative applications,!*3%31] where protein sequences are gen-
erated through autoregressive frameworks. However, these RNN-
based approaches suffer from inherent limitations: short-term
memory constraints and extended gradient propagation paths
render them particularly inefficient for long sequence genera-
tion, while potential information loss during training may fur-
ther compromise the quality of the generated sequences.!*]

The VAE conceptualizes protein sequences as parameterized
multivariate distributions,?3**] sharing the structural frame-
work of conventional autoencoders but distinguished by prob-
abilistic latent representations of data attributes. In this frame-
work, a decoder generates high-dimensional novel samples by
inputting low-dimensional data, such as Gaussian noise. How-
ever, VAE training is prone to posterior collapse, a phenomenon
where the model fails to produce diverse and high-quality
novel samples due to diminished expressiveness in latent space
learning.3¢]

GANSs constitute an implicit probabilistic model,l*”] wherein
two neural networks—the generator and the discriminator—
engage in adversarial competition. Through this framework, the
generator learns to synthesize synthetic data that closely resem-
bles the distribution of authentic training samples, while the dis-
criminator provides discriminative feedback to iteratively refine
the generator’s output. GANs have demonstrated notable efficacy
in protein sequence generation tasks.*33] However, their appli-
cation is hindered by two critical limitations: gradient conver-
gence instability and mode collapse. The former impedes learn-
ing by decelerating or halting parameter updates, whereas the
latter arises when the discriminator fails to differentiate synthetic
samples from real ones, driving the generator to produce repeti-
tive, low-diversity outputs of suboptimal quality.[**} Furthermore,
maintaining equilibrium between the convergence dynamics of
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the two networks remains inherently challenging, often leading
to training stagnation.[*!

Compared to the aforementioned generative models, diffu-
sion models exhibit superior performance in three key as-
pects: enhanced sample diversity, more stable training dy-
namics, and improved fine-grained controllability.[*}*?] Signifi-
cantly, diffusion models inherently support the generation of pro-
teins with diverse conformations from identical noise inputs—
a critical advantage given the dynamic nature of protein struc-
tures in biological systems. This intrinsic stochasticity enables a
modeling approach that better approximates real-world protein
behavior.32! Consequently, diffusion models represent a more
suitable paradigm for protein generation than conventional gen-
erative architectures.

2.3. Specific Workflow for the CPL-Diff Network

We will first briefly introduce the diffusion model (DMs).["*] DMs
is a latent variable model that aims to build a bridge between
simple data distributions such as Gaussian distribution and un-
known complex data distributions by constructing a Markov
chain x,,x,, ..., X, to approximate the unknown complex data
distribution p(x). DMs can be divided into forward and back-
ward processes. The forward process, also known as the diffu-
sion process, is a Markov process that can be represented as
q (Xp.rl%0) = Hthl q(x,|x,_;). The Markov process adds Gaussian
noise to the original data according to a schedule g, §,, ...,

q(x1x_,) =./\f<xt; 1—/3tx,,1,ﬁ,1>, t=1,2,...,T 1)

where B, controls the amount of noise added at the current
timestep t. When t — oo, x, will be destroyed into pure Gaussian
noise.

A significant feature of the forward process is that the state at
any timestep t can be directly obtained from x,:

4 (x1%) = N (x: v/@x,, (1- )1 @)

where @, = Hti=1 a; and @; = 1 — B,. For the calculation of each
timestep t, we first sample € ~ N'(0, I) from a Gaussian distribu-
tion, and then obtain x, from x,, through a,:

X, = VA %+ VI =G G)

Typically, since the schedule , in the forward process g is fixed,
there are no trainable parameters in the forward process.

The reverse process, also known as the inverse diffusion pro-
cess, is also a Markov process, which can be represented as
P (Xo1) = p(x7) HL p(x,_11%,). The reverse process starts from
Gaussian noise x; = N(0,1) and gradually removes noise to ob-
tain data that has not been corrupted by noise. However, in prac-
tical applications, we do not know the specific form of p(x, _+[x;),
but we can define a neural network p, to approximate this distri-
bution, that is, using p,(x;_|x;) instead of p(x,_,|x;) Therefore,
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the reverse process can be regarded as a parameterized Markov
chain:

'z (XO:T) =p (XT) HtT=1 Do (xt_llxt) ,

4
B (Ral5) = A (it (50) 2, (3)) "
where p,(xo.7) is the joint probability distribution of
(X0, Xy, ---,X7), p(Xr) is a Gaussian distribution. The mean
term ,(x;,t) accepts x; and t as inputs and can be learned. The
variance term X,(x,,t) can be set to §,I or other lists related to ¢
according to the settings of DDPM.

As shown in the red boxed portion of Figure 1, in generat-
ing peptides based on latent diffusion, the pre-trained ESM-2 en-
coder is used to map the peptide sequences into a continuous
latent space, which is denoted as x, € R*?, where ! is denoted as
the length of the sequences, and d is the dimensionality of the
latent space embedding. The ESM-2 encoder is not fine-tuned
throughout the entire process. In the forward process, Gaussian
noise is added at each time step. At the same time, the denoiser
is trained to reconstruct the noise-disturbed latent space embed-
ding. The denoiser is trained with the goal of minimizing the 12
loss between predicted x, and true x,.

As shown in the purple boxed portion of Figure 1, peptide se-
quence sampling starts with pure Gaussian noise and uses Atten-
tion mask to indicate the length of the sequence to be generated
and specify which type of peptide needs to be generated. The pure
Gaussian noise is then progressively denoised by sampling with
DDPM. After denoising is complete the obtained latent space em-
bedding is decoded using the ESM2 language modeling header
to finally obtain a new peptide sequence with the specified length
and type.

In the following part, we will introduce the structure of the
denoiser in detail.

2.3.1. Denoiser Module

In the reverse process, we train a neural network to gradu-
ally recover the original data by removing noise from the data
step by step. Specifically, our denoising network uses the Trans-
former architecture. The denoiser accepts four inputs: noisy data
x;, timestep ¢, Attention mask, and peptide category identity y.
Where x, € R To simplify training, we fix |, which means that
all latent space variables obtained after encoding by the ESM2
encoder have the same shape.

To make the sampling process more intuitive, we choose to
modify the shape of the attention mask in the denoising pro-
cess. Specifically, we use M to represent the attention mask,
and for all elements m;; of M, m;; € {0,1},= 1,2, ..., batch,j =
1,2,..., max_len, where batch is the number of sequences to be
generated and max_len is the maximum length of the sequence.
It should be noted that because ESM2 needs to add special mark-
ers at the beginning and end of the sequence, the actual max_len
is the true maximum sequence length plus 2. That is to say, in
each row vector of M, the number of “1”s represents the length
of the sequence to be sampled plus 2.

To accelerate the training process and minimize the impact
of outliers in the input on model performance during train-
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ing, we first apply layer normalization to the noisy embedded
inputs!*l:
xi = LaverN i\, NE[X]

. = LayerNorm (x)—y +p (5)

' Vur[xi]+e

where E[-] represents the mean, Var[-] represents the variance,
and y and B are learnable parameters used to perform affine
transformations on the normalized results. Here, we perform
layer normalization on the last dimension of the embedding to
ensure that each embedding vector is independently normalized.

Classification-Guided Generation: We attempted to guide our
diffusion model to generate peptides with specified therapeutic
effects. Specifically, Dhariwal & Nichol et al.l**! introduced a clas-
sifier into the diffusion model, at which point the inverse process
was modified to include the log-likelihood gradient of the classi-
fier:

V., Jogp (xly) =V, logp (x,) + @V, logp (y|x;) (6)

where p(y|x;) denotes a classifier and @ controls the bootstrap
strength. According to Ho & Salimans et al*! V, logp(y|x,) can
be further expressed using Bayes’ theorem as:

Vv, logp (ylx,) =V, logp (xly) + V, logp(x,), o)
where V, logp (y) =0

Equation (6) is then obtained by substituting Equation (7):

V, logp (x,ly) =V, logp (x,) +w (V, logp (x,y) = V, logp (x,))
=(1-w) V,logp (x,) + @V, logp (x,]y)

®)

Weletw = 1+ 4, then we have:
V,logp (xly) = (1+4) V, logp (xly) - AV, logp (x,) )
At this point when 4 = — 1, the first term is 0, at which point

the model ignores the given condition. When 4 = 0, the second
term is 0, at which point the model attaches conditions. When 4
> 0, at this point the model will prioritize conditional generation
and move away from the direction of unconditional generation.

We need a conditional and an unconditional network for this
process. However, we can treat the unconditional network as a
special case of the conditional network, i.e., construct an uncon-
ditional logo and replace the other logos with the unconditional
logo with some probability during training. In this way, we only
need to train one network.

Timestep Encoding: Timestep t is a discrete value. In order to
use it as part of the denoising process so that the denoising algo-
rithm knows which timestep of noisy data is currently being pro-
cessed, we use the sine and cosine position encoding proposed
by Vaswani et al.l*] to encode the timestep:

PE, ., =sin S L
(pos,2i) — 10 OOOZi/dmodsl !

(10)

. ~ pos
(pos2i+1) = COS 10 0002/ o
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where PE represents the position encoding, pos represents the
position, which is the timestep t, d,,,,, represents the total di-
mension after encoding, and i represents the value of the ith di-
mension in the position encoding matrix, where 0 < i < d,, 4,
— 1. Sinusoidal position encoding does not introduce additional
parameters to the model, thereby reducing training costs.

Conditional Information Embedding: After encoding the
timestep, it is embedded as conditional information by sum-
ming with the encoded category representation. It is then entered
into successive denoising blocks along with the noise-containing
data, the Attention mask with a modified shape. In order for the
model to better understand the given conditional information,
each denoising block has a separate MLP to further process the
encoded conditional information, which is then integrated into
the embedding through the feature affine transform operation
(FILM)1#7):

¢ty = F (Silu (F (PE (1)) + emb (y),

Ciy, Ciq = chunk (Ciemb) B (11)

xi = FiLM (x!) = (c‘y + 1) ox "+
where ¢~ denotes the conditional information embedding of
the ith denoising block, F(-) denotes the fully connected layer,
Silu denotes the activation function, PE(-) denotes the positive co-
sine position encoding function, and emb(-) denotes the category
identification code. chunk() denotes the splitting of a 3D tensor
into two chunks according to the last dimension. xi denotes the
input embedding of the ith denoising block, and when i = 0,
x! denotes the original of the noise-corrupted data. ® denotes the
element multiplication, ciy and ¢, denote the element scaling and
element displacement, and 1 is a tensor of ones to ensure that the
scaling factor is centered at one. By using the FiLM layer, the de-
noiser can better understand the current information about the
given conditions and thus perform better denoising.

Attention Layer: After integrating the conditional information
into the protein embedding, it will enter the ESM2 attention layer
for processing. The attention layer is a multi-head attention layer.
In the attention layer, the input embeddings are first subjected to
layer normalization, and then the query, key, and value are com-
puted from the layer-normalized embeddings:

Q=7 (). K =7 (), V=T, (x) 12

where Vt € {1,2,..., T}, Qi, Ki, and Vi represent the query, key,
and value learned by embedding x;, respectively. F, Fy, and F,
represent independent fully connected layers used to learn the
query, key, and value from the embedding.

For peptides, the relative positions of amino acids are very
important.[*8] Therefore, in order for our model to understand
the relative position information of amino acids in peptide se-
quences, rotational position encoding (RoPE) is applied to the
embedded query and key after calculating them respectively.!*’!
RoPE is a kind of relative position encoding, which realizes the
rotational transformations through complex number computa-
tion, and integrates the position information into the query and
key in the attention layer in the form of multiplication operation,
so that the embedded query and keys naturally contain position
information. We take query as an example, and for simplicity, we
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will write Q! as q. Specifically, for a 2D vector g, there is the fol-
lowing RoPE expressed in complex numbers:

F (@ m) =Ry (gm) ¢/ = g (13)

where q represents the vector to be RoPE, m represents the po-
sition of g, and 0 represents the angle of rotation. According to
the geometric meaning of complex multiplication, RoPE can be
written in the form of matrix multiplication:

flam) =

cos (m0) —sm(m&] [ ] (14)

sin (mf) cos (mb)

T . .
where[q, q,] represents the vector to be rotated. Since the inner
product satisfies linear superposition, for a vector of even dimen-
sionality, RoPE can be represented as:

f@am=Rnq
[ cos (mf) _— sin (mé,)
@ cos (mb,) 4 sin (mé,)
cos (mo - sin (mé
_ v ® (mo,) i a3 ® ' (mé,) )
R cos (mé,) & sin (m#; )
L n0det1 cos (mgdmmt/ H) aoga-1] LS (medmodet/lfl)
where R,
[ cos (”’“90) —sin (””00) 0 0 0 i
sin (m#,) cos (m8,) 0 0 0
0 0 cos (moy) ... 0 0
= 0 0 sin (m#;) ... 0 0
0 0 0 .. Cos <m9dmodel/z,1) —sin <mgdmodzl/2*1)
| 0 0 0 .. sin (medmodzz/zfl) cos (mdeM/z,l

(15)

where R, represents the rotation matrix at position m, and since
R, is an orthogonal matrix, it does not change the stability of the
model. ® represents bitwise multiplication. Here, the value of 6,
is based on the Sinusoidal position encoding scheme,!“! which
is 0; = —="r—, where i represents the value of the ith dimen-
sion in the position encoding matrix(0 <i<d, 44 — 1), pos rep-
resents the position, and d 4. represents the total dimension
after encoding. In practical applications, we can perform the fol-
lowing operations to obtain the rotated query and key. Take query
as an example. First, split the query into Q! and Q! based on the
last dimension, then take the opposite number of Q) and merge
them again:

i, Q! = chunk (Qi) ,
Qilzczoncat(— Q) (16)

The position list P is an arithmetic sequence with a minimum
value of 1, a maximum value of L—1, and a common difference
of 1. Perform outer product operation on the position list P and
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the argument list 6, and perform cosine and sine operations on
each element in the resulting matrix:

r=P®O,
Teos = COS (I’) » Tgin = sin (1')

(17)

Finally, perform a rotation operation to obtain the rotated Qi:
Ql = Ql Tos T ersin (18)

For Ki, we only need to perform the same operation as obtain-
ing Q' to get the rotated Ki, denoted as K'. Then, perform the dot
product operation between Q! and Ki:

v =Q (k) (19)

In order to let the denoiser know the sequence length corre-
sponding to the currently processed & after calculating i, a mask
matrix is added:

vi=y +M (20)

where M € Rmaxten+2)x(maxlen+2) The first [+ 2 columns (1 < L <
max_len) of each row of M are 1, and the rest of the columns are 0.
The reason for adding 2 is because we want the model to handle
the two special tokens CLS and EOS as well. This setup not only
allows the model to focus more on the effective parts, but also
allows us to have good interpretability of the model.

Then calculate the attention of the ith denoising block:

Att (y', V') = softmax (y') V! (21)

Furthermore, based on the extension in,*?! we can obtain the
multi-head attention of the i-th denoising block, which is calcu-
lated as follows:

MulitHead (Q', ki, Vi) = FM‘([headm] ) s )
head,, = Att,, (v', V')

where F,, is a fully connected layer connecting the n heads. Fi-
nally, the output embedding is obtained through a feed-forward
neural network and layer normalization.

After x¥ is processed through multiple consecutive denoising
blocks, its output is connected to x, for residual connection and
layer normalization, and finally passes through an MLP to ob-
tain the predicted polypeptide sequence embedding x, that is not
corrupted by noise.

2.3.2. Training Phase

After a detailed introduction to the forward diffusion and reverse
denoising processes, we will proceed to explain how to train the
diffusion model. For X, in Equation 4, we adopt a fixed list based
1;;(;’1 p.. where @, de-
pends on the noise plan adopted by the diffusion model. Here,
our noise plan adopts the sqrt noise plan proposed by Diffusion-
LM

on the conclusion of DDPM, namely X, =

#=1-1)— (23)
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Algorithm 1 Diffusion Training

Require: Peptide sequences w, Peptide embeddings D, Original data sample xg,
Latent variables xy, ..., xr, Protein sequence encoder E(), Tokenizer T(), Sequence ids
seq_ids, Attention mask M, Peptide type identifier y,
Denoising model 2y, Timestep T, Noise ¢, Noise schedule @;, Learning rate n

1 repeat

2 w,y) ~ pw, y) Sample sequence with condition from dataset
3 y < @ with probability p,pcons  Randomly selected identifiers become unconditionally
4 seq_ids, M = T(w) Get sequence ids and Attention mask
5: xo = E(seq_ids, M) ~ D Encode sampled data
6 t~ U({1,..., T} Sample timestep
7 e~ N(©OI) Sample noise
8 X = \/ixo +4/T—ae Compute latent variables
9 L=1|zg(x;, t,M,y) — XoH% Compute loss

10 0=0-nVyL
11 until converged

Update parameters

where S is a smaller constant. Then, according to a, =’
[1_, @, a;=1— B, the p, list can be recursively calculated.

For y, in Equation 4, we can achieve it by training a neural
network 2,. According to the conclusion drawn by Diffusion-LM,
for the text latent variable diffusion model, the neural network
trained to directly predict the embedding without noise will per-
form better than predicting the effect of noise. Therefore, our de-
noising model directly predicts the original embedding x,. There-
fore, the optimization objective of the model is to minimize the
12 loss between the predicted x,, and the true x,:

LO=FE, .oon [112 (xtM)=x]] (24)

where M represents the mask matrix, which represents the
length of the sequence corresponding to the latent space embed-
ding x,. It should be noted that, since ESM2 needs to add <CLS>
and <EOS> tokens at the beginning and end of the sequence,
that iS, Me Rbatchx(maLlenJrZ)’ Rz] I= {0, 1}

We have chosen ESM2-8 M as our pLM. During use, separate
the encoding and decoding parts of the ESM2-8M. The parame-
ters of the encoding part will not be adjusted during the entire
training process, while the decoding part will use the collected
polypeptide sequences for fine-tuning.

Algorithm 1 shows the training process of the denoiser. The
peptide sequence w and the corresponding peptide type identi-
fier y are first extracted from the training set. Then with a cer-
tain probability, some of the marks are turned into unclassi-
fied marks. Then, the vectorized sequence and the correspond-
ing mask are used to obtain the ESM2 latent space embedding
x, corresponding to the sequence. Then, we randomly sample a
timestep ¢ from the set of integers {1, ..., T} and sample a ran-
dom noise € from a Gaussian distribution. Then, the denoising
unit 2, is optimized using the gradient descent strategy. Repeat
the above process until 2, converges.

2.3.3. Peptide Sequence Sampling

Algorithm 2 shows the sampling process of our model. The sam-
pling method follows the DDPM approach, where noise-free em-
beddings are eventually obtained through stepwise denoising.
The denoising will predict both the conditional noise-free embed-
ding %, , and the unconditional noise-free embedding %, 4. Then
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Algorithm 2 Diffusion Sampling

Require: Estimated original data X, Latent variables x;, ..., X, Denoising model ,,
Timestep T, Noise ¢, Noise schedule @, = H’; a;, Noise intensity §, = 1—a,,
Peptide type identifier y, Sample length L, Attention mask M, Gradient scale 4,
Protein sequence decoder D()

1 xr ~ N'(0, I) Sample the initial latent variable
2 L—-M Generate an attention mask by specifying a length
3 fort=T,..,1do

4 Koy = 2o (X, 1, M, ) Estimate original data x, with condition
5 Koy = 2y (X, 1, M) Estimate original data x, with uncondition
6: %= (14 ) %y, — Aoy

4: ift = 1then

5 return.lgJ Get generated data
6 iy, = @ X+ \/&»']U%Z?")x, Compute mean
7 g = % Be Vmax_ten, 320) Compute variance
8 e~ N(OI) Sample noise
9: X,_1 = fi + exp(0.5 X log(£,))e Compute the next latent variable
10:  end for

1: W =D(%) Decode generated data

%, is obtained by a linear combination of %, and %, 4 and the de-
gree of bias toward the specified polypeptide type is controlled by
the bootstrap strength 4. The mean j, of g(x,_, |x,, %) is then com-
puted from the obtained %, and for simplicity we fix the variance.
Finally, x, _, is obtained by the reparameterization trick.

2.3.4. Sequence Decode

After obtaining the generated ESM2 latent space embeddings,
we decode them using the language modeling header that comes
with ESM2. The decoder consists of two linear layers and an ac-
tivation function; the ESM2 latent space embeddings are pro-
cessed by the decoder, and the LogSoftMax activation function is
used to obtain the logarithm of the probability of each vocabulary
word, and the one with the largest value is selected as the word
at the current position. After determining all the output words,
a sequence is considered valid if the first word is labeled CLS
and the word not in the second position is labeled EOS. Finally,
we select the content between the CLS and EOS tags as the final
generated peptide sequence; the CLS tags, EOS tags, and the rest
are discarded.

3. Experiments

In this part, we first present the experimental dataset, evaluation
metrics, and implementation details, and then conduct compre-
hensive experiments on the dataset and compare it with other ex-
isting methods. Finally, we conduct an ablation study to analyze
the impact on model performance when using masks to control
the length of the generated sequences in our framework.

3.1. Experimental Datasets

We collected peptide sequences from the following publicly avail-
able databases: APD3,>!l CAMPR4,°2] dbAMP2,[>3] LAMP2,[54]
DRAMP 3.00°°] DBAASP v3,°°) and GRAMPA.I*’ We collected
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Table 1. Distribution of each category in the dataset.

Benchmark Independent
Antimicrobial 11347 2837
Antifungal 4658 1165
Antiviral 2767 691
Total 18 772 4693

peptide sequences labeled antibacterial, antifungal, antiviral, and
antimicrobial from the above databases. For the dataset used to
train the denoising model, the data were screened according to
the following criteria: 1) sequence length was limited to 5 to 50
amino acids; 2) only uppercase letters were included, and “U,
Z, 0, B, J” residues were excluded; and 3) sequences containing
“X” were excluded. After screening, the sequences were merged
and, duplicates were removed, resulting in 23465 usable peptide
sequences. We grouped antibacterial and antimicrobial into an-
timicrobial and divided the dataset into training and testing sets
in a ratio of 8:2. The distribution of each category in the dataset
is shown in Table 1. All data were collected up to June 12, 2024.

3.2. Baseline Models

We compare our CPL-Diff with the following existing methods.
For each method described below, we train on the same dataset
unless otherwise noted. Each method is trained using either op-
timal or default hyperparameters. We only consider methods for
which the source code is publicly available.

LSTM-RNN,® an RNN-based model for capturing patterns in
peptide sequence data, which generates new peptide sequences
by autoregression.

AMPGAND?! encodes peptide sequences using the PC6 pro-
tein coding method and generates new peptide sequences from
the distribution of the base peptide using a GAN.

HydrAMP,['!] a CVAE-based model. The model comes with a
MIC classifier for AMP that learns the hidden space of biolog-
ically significant peptides to generate AMP sequences without
constraints. Since the method relies on specific biological knowl-
edge, we directly used the generated sequences provided by Hy-
drAMP.

ProGen,®® a Transformer-based protein sequence generation
model, employs an autoregressive approach for sequence synthe-
sis while enabling function-oriented protein design through con-
ditional label integration.

3.3. Evaluation Metrics

ESM-2 Pseudo-Perplexity: We wuse the ESM2 pseudo-
complexityl?!l to assess the generation quality of generative
models. In general, a lower value of pseudo-complexity indicates
a higher confidence level. Specifically, the pseudo-complexity is
computed as an exponent of the negative pseudo-logarithmic
probability of a sequence. This index generates a deterministic
value for each sequence, and the calculation requires L positive
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passes, where L represents the length of the input sequence. The
calculation is done as follows:

L
PPL (w) = exp {—% Z logp (wile#)} (25)
i=1

Predicted Local-Distance Difference Test (pLDDT)): This
metric is a common metric used in the prediction of protein
structures. Briefly, pLDDT evaluates the difference in distance
between the position of each residue in the predicted protein
structure and the actual structure. A lower score indicates a larger
difference between the predicted and actual structure. We used
ESMfold to predict the 3D structure of a given peptide sequence.
For each amino acid in the predicted structure, ESMfold provides
a pLDDT score. We take the average of the confidence scores for
all amino acids as the overall confidence score for the peptide.

Instability: The instability score is a measure of peptide sta-
bility based on the amino acid composition of the generated
sequence.[®] A lower score indicates that the peptide is more
likely to remain stable. We used the peptide descriptors in the
modIAMP packagel®!] to assess the instability score.

Similarity: The similarity score evaluates the comparison score
between the generated peptide sequence and the existing se-
quences in the corresponding peptide dataset. A lower com-
parison score indicates that the generated peptide sequence
is more novel. We calculated this using the PairwiseAligner
and BLOSUMG62 pairwise scoring matrices[®?! in the biopython
package.[®]

External Classifier: We use an external classifier to evaluate the
proportion of the generated sequences with the specified treat-
ment effect, with the obtained proportions all denoted as “Ac-
tivity”. The activity prediction of AMP was performed using the
Random Forest (RF) AMP activity classifier on CAMPR4.132] The
activity prediction of AFP was performed using the AFP activity
classifier on Antifungipept.®* The activity prediction of AVP was
obtained using the AVP activity classifier on Stack-AVP.[%]

Physicochemical Properties: We compared the peptides gen-
erated by CPL-Diff with those generated by other models and
with real peptide sequences. For the assessment of physicochem-
ical properties, we chose charge, isoelectric point, hydrophobic-
ity, and aromaticity to evaluate the peptide sequences generated
by each model. The isoelectric point refers to the solution pH
at which the net charge of all basic (positively charged) and
acidic (negatively charged) amino acids in the peptide molecule
is zero. Charge calculations were performed according to Bjel-
Iqvist’s method,!®! which assesses the net charge at different
pH conditions. Hydrophobicity was quantified using the Eisen-
berg scale,[*’] which is a measure of structural amphiphilicity of
peptides. Aromaticity was assessed based on the occurrence of
phenylalanine, tryptophan, and tyrosine.[%! All the physicochem-
ical properties mentioned were calculated using the modlAMP
toolkit.I®!l Where the pH for calculating charge was set to 7.4 and
the window size for calculating hydrophobicity was set to 7 as
suggested by Eisenberg et al.

3.4. Implementation Details
Our model is trained on a single NVIDIA Tesla A100 80G GPU.

The batch size is set to 64. The initial learning rate was set to
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Table 2. Performance evaluation of model generation of AMPs.“1” indi-
cates that the higher the metric, the better. “|"indicates that the lower the
metric, the better. Boldface indicates the best performance.

Model Perplexityl! pLDDT? Instabilityl Similarityl  Activity?
Train/Real AMPs 15.3703 70.5004 41.6195 - -
Random sequences 23.8206 56.8559 43.5227 36.9055 0.1382
LSTM-RNN 17.8742 65.1393 41.4064 34.3996 0.7049
AMP-GAN 17.1979 66.6217 42.0839 32.5901 0.8508
HydrAMP 13.9181 66.3648 75.0801 35.5401 0.8450
ProGen 15.8686 67.0492 40.7964 36.4182 0.7261
CPL-Diff 10.8500 67.3976 39.3651 32.4198 0.9631

Table 3. Performance evaluation of model generation of AFPs.“1” indicates
that the higher the metric, the better. “|”indicates that the lower the metric,
the better. Boldface indicates the best performance.

Model Perplexityl/ pLDDT? Instability] Similarity]  Activity?
Train/Real AFPs 14.6803 71.5134 41.5572 - -

Random sequences 23.7935 56.7997 43.7434 36.7187 0.1810
LSTM-RNN 17.2989 65.5043 42.3427 33.2955 0.7032
AMP-GAN 17.0203 66.9977 40.4288 32.7803 0.7514
ProGen 15.6410  62.7835 39.9445 32,4573 0.8174
CPL-Diff 10.5346 70.1241 33.2625 33.0907 0.8822

1078 and boosted to 9.84 x 10~* within 10 000 batches by cosine
learning rate warm-up. This is followed by a cosine learning rate
decay scheme to 107> within 200 000 batches and subsequently
fixing that learning rate. The model loss was calculated using 12
loss between the predicted original embedding and the true orig-
inal embedding. We used an exponential moving average (EMA)
with a decay coefficient of 0.99 to smooth the entire training pro-
cess. The entire implementation uses PyTorch 1.13.1 and Python
3.8.18.

We use the sqrt noise schedule proposed by Diffusion-LM,
where the constant S is set to 107*. The diffusion time step is set
to 2000. We use a 6-layer Attention Layer with 20 attention heads
and 320 hidden sizes as the backbone of the diffusion model.
The probability of eliminating polypeptide category identification
is set to 0.1. For detailed information regarding the selection of
hyperparameters, please refer to the Part S1 (Supporting Infor-
mation).

3.5. Results
3.5.1. Comparison with Baseline Model

We let all models (our model and the baseline model) generate
10 000 AMP samples, 5000 AFP samples, and 5000 AVP samples.
Table 2, Table 3, and Table 4 show the performance comparison
between CPL-Diff and the baseline model in terms of generating
AMP, AFP, and AVP, respectively. It is important to note that our
model allows for the control of the length of generated peptide se-
quences. To simulate the randomness present in other models,
we chose to sample the length of the generated sequences from
a uniform distribution during the sampling process. Since we
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Table 4. Performance evaluation of model generation of AVPs.“1” indicates
that the higher the metric, the better. “|”indicates that the lower the metric,
the better. Boldface indicates the best performance.

Model Perplexityl! pLDDT? Instabilityl  Similarity)  Activity?
Train/Real AVPs 17.7406 70.1789 46.0613 - -

Random sequences 23.7893 56.6697 44.0295 36.3364 0.1582
LSTM-RNN 19.6750 65.9239 43.2938 29.4890 0.6770
AMP-GAN 18.9127 67.5462 43.9076 29.0361 0.7150
ProGen 17.5505 65.6670 49.5000 31.3414 0.6626
CPL-Diff 13.4048 70.0062 44.4324 27.3311 0.7596

adopted a classifier-free guided diffusion model, different guid-
ing strengths will result in different sampling outcomes. There-
fore, in this part, we set the guiding strengths for AMP, AFP,
and AVP to 1.5, 1.5, and 1.0, respectively. For the results of other
guiding strengths, please refer to Tables S8-S10, and Figure S1
(Supporting Information).

Compared to all baselines, the three peptides generated by
CPL-Diff outperform the baseline model in most metrics. In
particular, in terms of perplexity, our model is lower than all
baseline models, indicating that CPL-Diff generates peptide se-
quences with higher confidence. Furthermore, the activity levels
of the three types of peptide sequences generated by CPL-Diff
surpass those of all baseline models, indicating that CPL-Diff
has a greater potential for generating active peptide sequences
compared to the baseline models. Specifically for each peptide,
CPL-Diff outperforms all baseline models in generating AMP
sequences. We also note that the AMP sequences generated by
CPL-Diff exhibit higher stability than real AMPs. For generating
AFP sequences, CPL-Diff is optimal in all metrics except similar-
ity scores. For generating AVP sequences, CPL-Diff is optimal in
all metrics except instability scores. The reason why some of the
metrics are sub-optimal in terms of generating AFP sequences
and generating AVP sequences may be due to the fact that the
number of peptide sequences in each category of our dataset is
imbalanced as shown in Part 3.1, which leads to the fact that our
model doesn’t learn the features of peptides with a smaller num-
Dber of peptides very well. But despite this, our model outperforms
the limiting model in most of the metrics. And it can be seen that
CPL-Diff can still generate more novel peptide sequences even
when the length of the sequences generated by CPL-Diff is spec-
ified. This also confirms our earlier statement that training with
different types of peptides helps the model capture peptide com-
monalities.

The analysis of the physicochemical properties of AMPs is
shown in Figure 2a. CPL-Diff generated AMPs have pl and
charges that are very close in distribution to real AMPs. CPL-Diff
and HydrAMP both exhibit higher pI and charge. The variance
in charge for ProGen was notably extensive. However, CPL-Diff
demonstrated a higher upper quartile of pl, alongside a lower
quartile that surpasses that of real AMPs. This suggests that CPL-
Diff can generate AMPs with potentially biologically active advan-
tages. In terms of global hydrophobic moments and aromaticity,
the distribution of the models is closer to that of real AMPs, ex-
cept for HydrAMP. The reason why HydrAMP exhibits a very
high aromaticity may be due to the fact that it frequently adds
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aromatic amino acids to the peptide, at the cost of a greater re-
duction of its hydrophobicity, which would somewhat reduce its
hydrophobicity. This reduces the AMP activity to a certain extent.
Moreover, we can note that the AMP generated by CPL-Diff ex-
hibits a wider interquartile range of hydrophobicity and aromatic-
ity. This broadening of the range may lead to the generation of
novel AMPs with unique properties that can be applied to a vari-
ety of therapeutic applications.

The analysis of the physicochemical properties of AFPs is
shown in Figure 2b. CPL-Diff The distribution of pI and charge
of the generated AFPs is also very close to that of real AFPs. In
contrast, the charge distribution of AFPs produced by ProGen de-
viates significantly from that of real AFPs. Furthermore, CPL-Diff
also exhibits a higher upper quartile compared to real AFPs. This
suggests that CPL-Diff can generate AFPs with potential bioactive
advantages. in terms of global hydrophobic moments and aro-
maticity, all baseline models are close to the distribution of real
AFPs in terms of distribution. It can be noted that CPL-Diffhas a
higher lower quartile in hydrophobicity than real AFPs, suggest-
ing that CPL-Diff is relatively less likely to be able to generate less
hydrophobic AFPs. And CPL-Diff has a wider range in aromatic-
ity. This suggests that CPL-Diff also has the potential to generate
novel AFPs with unique characteristics.

The analysis of the physicochemical properties of AVPs is
shown in Figure 2c. The charge distribution of AVPs generated by
ProGen also shows a significant deviation from that of real AVPs.
The distribution of pI and charges of AVPs generated by CPL-Diff
closely resembles that of authentic AVPs. Moreover, the pl values
generated by CPL-Diff exhibit a higher upper quartile and max-
imum value compared to those of real AVPs. This suggests that
CPL-Diff can still generate peptides with higher activity than real
AVPs. In terms of global hydrophobic moment, CPL-Diff likewise
exhibits a higher maximum point. In terms of aromaticity, CPL-
Diff also a wider range. This suggests that CPL-Diff also has the
ability to produce new AVPs with unique properties.

We further conducted an in-depth analysis of the generated
polypeptide sequences across different lengths. For each base-
line model, we randomly sampled 20 sequences from each length
category of the generated polypeptide sequences. Similarly, CPL-
Diff was tasked to generate 20 polypeptide sequences for each
sequence length. It is important to note that the maximum se-
quence length provided by the HydrAMP team is 25.

The proportion of active polypeptide sequences of varying
lengths generated by each model is illustrated in Figure 3. It can
be observed that, for the three types of peptides, the trend in ac-
tivity variation across different length categories for all models
closely mirrors the trend in the proportion of different lengths
within the peptide dataset (Figure S2, Supporting Information).
Moreover, the trend in activity variation for CPL-Diff is notably
smoother compared to other baseline models. Particularly for
AMPs, by controlling the generated sequence length, even when
there is a limited amount of longer short peptides data, the trend
in activity variation remains relatively smooth when generating
longer polypeptides. Although the trend in activity variation for
AVPs generated by CPL-Diff is not as smooth as that of AMPs
and AFPs generated by CPL-Diff, it is still generally smoother
than that of the baseline models. This indicates that CPL-Diff
can leverage additional length control information and category-
specific information to facilitate further learning of the charac-
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(b) Distribution of physicochemical properties of AFPs generated by CPL-Diff with the baseline model and real AFPs.

pl Charge
15.0 ==
14
12.5
2 10.0
10 £
5.0
8
2.5
6 0.0
-2.5
a4
-5.0 4
& NS > Q> N NS > Q
¢ & F &SN €& EE S
R NS < A
S & A &
N &

Hydrophobic Moment Aromaticity
08 - 0.40
T 0.35
06 0.30
0.25
0.4 . 0.20
0.15
0.2 0.10
0.05
0.0 = = 1 0.00
& N > Q & S Q
& S F S < G
& 8 < oS & S < SO
M ¥ (/3;\'7 N G

(c) Distribution of physicochemical properties of AVPs generated by CPL-Diff with the baseline model and real AVPs.

Figure 2. Distribution of physicochemical properties (including isoelectric point (pl), charge, hydrophobicity ratio, and aromaticity) of peptides gener-
ated by CPL-Diff and baseline models and real peptides. a) Distribution of physicochemical properties of AMPs and real AMPs generated by CPL-Diff
and baseline models (including LSTM-RNN, AMP-GAN, HydrAMP, and ProGen). The number of samples generated is 10 000. b) Distribution of physic-
ochemical properties of AFPs and real AFPs generated by CPL-Diff and baseline models (including LSTM-RNN, AMP-GAN, and ProGen). The number of
samples generated is 5000. c) Distribution of physicochemical properties of AVPs and real AVPs generated by CPL-Diff and baseline models (including
LSTM-RNN, AMP-GAN, and ProGen). The number of samples generated is 5000.

teristics of the polypeptide sequence space corresponding to spe-
cific lengths. Consequently, this mitigates the issue of a restricted
exploration space during generation due to insufficient training
data.

Taken together, all the baseline models can only generate one
type of peptide sequence, and all of them are trained using only
one type of peptide dataset, and thus do not show significant ad-
vantages over real peptides in some performance metrics and
physicochemical properties. On the other hand, our CPL-Diff is
trained with three types of peptide sequences, which allows us

Adv. Sci. 2025, 12, 2412926 2412926 (11 of 23)

to capture the commonality of peptides and thus has the ability
to generate new peptides with significant advantages over real
peptides. And since we used a diffusion model without classi-
fier guidance (Part 2.2.1), we can allow CPL-Diff to choose one of
the three types for generation. This can greatly reduce the cost of
training. Although the imbalance of the dataset causes some of
the peptides generated by CPL-Diff to be inferior in some met-
rics. However, taken together, CPL-Diff still has the potential to
generate highly active peptides. It should be noted that since CPL-
Diff can specify the length of the generated peptide sequences,
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Figure 3. Variation in the proportion of active peptides across different length categories generated by CPL-Diff with the baseline models. The x-axis of
each subplot represents the sequence length categories, while the y-axis represents the proportion of peptide activity. The number of peptide sequences
for each length is consistent across all models (n = 20). a) Variation in the proportion of active AMPs across different length categories generated by
CPL-Diff and baseline models, with the maximum sequence length for HydrAMP being 25. b) Variation in the proportion of active AFPs across different
length categories generated by CPL-Diff and baseline models. c) Variation in the proportion of active AVPs across different length categories generated

by CPL-Diff and baseline models.

the novelty of the generated peptide sequences can still be guar-
anteed in this case, which is sufficient to show that our method
is advantageous.

3.5.2. Effectiveness of CPL-Diff’s Learning Competencies

Amino Acid Composition Analysis: To further evaluate CPL-
Diff’s learning ability for peptides, we counted the frequency of
occurrence of amino acids in the peptide sequences generated
by CPL-Diff and compared them with real peptides. As shown
in Figure 4, where the left column is the amino acid occurrence
frequency distribution of the three real peptides, and the right
column is the amino acid occurrence frequency distribution of
the three peptides generated by our CPL-Diff. Overall, the three
peptides generated by CPL-Diff are close to the real peptides in

Adv. Sci. 2025, 12, 2412926 2412926 (12 of 23)

terms of frequency distribution. And it can be noticed that all
three peptide sequences generated by CPL-Diff have a lower ten-
dency for methionine (M). Because M is easily oxidized and M
is uncharged, too much M may reduce the activities of AMPs,
AFPs, and AVPs. In contrast, the propensity is high for both ly-
sine (K) and leucine (L). Because K is positively charged and L is
hydrophobic, an increase in K and L may favor an increase in the
activity of AMPs, AFPs, and AVPs. And this phenomenon was
also observed for all three real peptides. This suggests that our
CPL-Diff may be able to learn the common phenomenon that
the number of occurrences of a particular amino acid has an ef-
fect on the activity of most peptides. And we can also notice some
special phenomena:

1) For histidine (H), the propensity of both CPL-Diff and real
polypeptides is low, and CPL-Diff occurs less frequently than
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(c) Composition of amino acid in AVPs

Figure 4. Distribution of amino acid occurrence frequencies. a) Amino acid occurrence frequencies of AMPs. Frequency of amino acid occurrence for
real AMPs on the left and amino acid occurrence for CPL-Diff-generated AMPs on the right. b) Frequency of amino acid occurrence for AFPs. Frequency
of amino acid occurrence for real AFPs on the left and amino acid occurrence for CPL-Diff-generated AFPs on the right. c) Frequency of amino acid
occurrence for AVPs. Frequency of amino acid occurrence of real AVPs on the left and amino acid occurrence of CPL-Diff-generated AVPs on the right.

3)
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real polypeptides. This may be due to the fact that histidine
(H) is hydrophilic, and the presence of too much histidine
(H) may cause the peptide to preferentially come into contact
with water molecules.

For tyrosine (Y), both AMPs and AFPs generated by CPL-
Diff appear at a low frequency, whereas they will appear
at a higher frequency in generated AVPs than in generated
AMPs and AFPs. This is consistent with what happens with
real peptides. This may be due to the fact that tyrosine (Y)
is uncharged, whereas AMPs and AFPs achieve bacterial
or fungal killing mainly by penetrating or disrupting cell
membranes, in which case they need to interact with the
charge on the cell membrane. In contrast, uncharged amino
acids like tyrosine (Y) may not be as important for AMPs
and AFPs.

For aspartic (D), glutamic (E), and glutamine (Q), the same
occurs as for tyrosine (Y) and cysteine (C). This may be due
to the fact that aspartic (D), glutamic (E), and glutamine (Q)

2412926 (13 of 23)

are negatively charged in the pH environment of the body,
and that excess aspartic (D), glutamic (E) and glutamine (Q)
may diminish the effectiveness of AMPs and AFPs in pene-
trating or disrupting cell membranes. In contrast, appropriate
increases in aspartate (D), glutamate (E) and glutamine (Q)
may help AVP interact with positively charged regions of the
virus.

Overall, our CPL-Diff can learn the patterns of amino acid com-

position in various types of peptides, and potentially also some
physicochemical properties, which can then be used to make a
tendency selection based on the physicochemical properties.

Alpha Helix and Beta Sheet Propensity: We used the Chou-

Fasman method[®®! to predict the secondary structures of the
real polypeptide sequences and the sequences generated by CPL-
Diff, and calculated the Alpha helices and sheet propensities to
evaluate the accuracy and reliability of our model. As shown in
Figure 5. CPL-Diff-generated peptides are very close to those of
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Figure 5. Distribution of Alpha helix and Beta sheet propensity. a), b), and c) Alpha helix and Beta sheet propensity distribution maps for AMPs, AFPs,
and AVPs, respectively. The left column is the Alpha helix propensity distribution map and the right column is the Beta sheet propensity distribution

map.

real peptides in terms of Alpha helix and Beta sheet propensi-
ties, which indicates that our CPL-Diff captures the key struc-
tural features of real peptide sequences better. And since the sim-
ilarity scores of the peptides generated by CPL-Diff are low (part
4.4.1), this may indicate that CPL-Diff is capable of discovering
new, functionally similar peptide sequences with potential appli-
cations.

Latent Space Visualization: In order to evaluate the ability of
CPL-Diff to learn latent space embeddings, we used t-SNE["" and
UMAP!"Y approaches to reduce the dimensionality of generated
ESM2 latent space embeddings and ESM2 latent space embed-
dings of real peptides for visualization. Where the real peptide

Adv. Sci. 2025, 12, 2412926 2412926 (14 of 23)

latent space embedding uses the entire peptide sequence data we
collected and samples 1000 samples as the generated peptide la-
tent space embedding respectively.

Figure 6 illustrates the results of t-SNE and UMAP downscal-
ing, showing the peptide embeddings generated by real peptides
and CPL-Diff in the 2D ESM latent space. It can be seen that the
peptide latent space embeddings generated by CPL-Diff exhibit
obvious aggregation and obvious overlap phenomenon with the
real peptide embeddings, and have significant similarity in dis-
tribution compared with the real peptides. This indicates that
our CPL-Diff can capture the intrinsic features of real peptides
well.
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Figure 6. Visualization of the t-SNE and UMAP dimensionality reduction results for the ESM2 latent space embeddings of real peptides and those
generated by CPL-Diff. Panels a), b), and c) show the dimensionality reduction visualization effects for AMPs, AFPs, and AVPs latent space embeddings,
respectively. The left column represents t-SNE dimensionality reduction, while the right column represents UMAP dimensionality reduction. Green dots
represent the real peptide ESM2 latent space embeddings after dimensionality reduction, and red dots represent the CPL-Diff-generated ESM2 latent
space embeddings after dimensionality reduction.
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Table 5. Ablation study on CPL-Diff. Each cell represents the metrics for AMPs, AFPs, and AVPs, respectively, separated by slashes. “1” indicates that the
higher the metric, the better. “|”indicates that the lower the metric, the better. (n = 1000).

Methods Perplexity| pLDDT? Instability] Similarity| Activity?
CPL-DIff (w/o pLM) 22,3206/ 57.6021/ 45,1446/ 36.4182/ 0.1750/
21.6211/ 57.9181/ 43.4712/ 36.0015/ 0.1540/

22.9786 58.0037 48.2478 35.1470 0.1610

CPL-Diff (w/o condition 12.1410/ 66.6493/ 41.4120/ 31.2002/ 0.8850/
& mask control) 11.0439/ 65.9577/ 41.3547/ 27.0132/ 0.8630/
13.9343 68.5213 48.9931 26.8445 0.8120

CPL-Diff (w/o condition) 11.8766/ 66.9977/ 40.9808/ 31.6384/ 0.8880/
10.7276/ 66.4553/ 45.6917/ 27.1412/ 0.8660/

13.5306 69.5768 46.1866 26.5893 0.8260

CPL-Diff (w/o mask 11.8254/ 67.1042/ 40.5988/ 31.8037/ 0.9600/
control) 10.7033/ 69.0103/ 42.3264/ 32.0284/ 0.8620/
13.5398 70.9471 46.9630 26.7171 0.7240

CPL-Diff 10.7180/ 68.4545/ 38.3809/ 32.4894/ 0.9720/
10.4099/ 70.1558/ 36.2060/ 32.9795/ 0.8780/

12.8759 71.4834 44.6779 27.2248 0.7580

3.5.3. Ablation Study

To investigate the necessity of each module in CPL-Diff, we com-
pared CPL-Diff with its variants: (1) CPL-Diff(w/o pLM)replaces
ESM2 8 M with a common embedding layer; (2) CPL-Diff(w/o
condition)removes the condition guidance module; (3) CPL-
Diff(w/o mask control)removes the mask control generation
length module; (4) CPL-Diff (w/o condition & mask control)
removes both the conditional guidance module and the mask-
controlled generation length module. For the CPL-Diff models
without the conditional guidance module, we trained three sepa-
rate models using the three types of peptide datasets. All models
were sampled to generate 1000 peptide sequences for compari-
son. If the model contains the conditional module, the guidance
strengths are consistent with that described in part 3.5.1.

The results are presented in Table 5. When the ESM2 8 M is
replaced with a standard embedding layer (w/o pLM), if trained
using the CPL-Diff architecture, the model struggles to learn the
features of peptide sequences, resulting in performance nearly
equivalent to completely random sequence generation. This in-
dicates that the combination of pre-trained pLM with diffusion
models significantly enhances the quality of generated peptide
sequences.

Removing either the mask-controlled generation length mod-
ule or the conditional guidance module from CPL-Diff, or both,
leads to a noticeable increase in perplexity and instability com-
pared to the complete CPL-Diff model, along with a significant
decrease in pLDDT scores. Although there is only a slight reduc-
tion in similarity, this comes at the cost of increased uncertainty
and instability. Furthermore, the frequency distribution of amino
acids in the generated sequences shows a significant difference
compared to the real frequency distribution (Figures S3—S6, Sup-
porting Information).

Furthermore, it was observed that when utilizing the condi-
tional guidance module, the proportion of active AMPs and AFPs
within the generated peptide sequences is higher than when
training CPL-Diff solely on AMPs or AFPs. Conversely, the pro-
portion of active AVPs within the generated sequences is lower

Adv. Sci. 2025, 12, 2412926 2412926 (16 of 23)

than when training CPL-Diff specifically on AVPs. This may be
attributed to the fact that AMPs, AFPs, and AVPs are all infection-
fighting peptides sharing certain biological characteristics, allow-
ing the conditional guidance module to capture commonalities
among different types of peptides. However, due to the relatively
smaller dataset size for AVPs compared to the other two types,
when these three types of peptides are combined, CPL-Diff learns
fewer specific characteristics of AVPs compared to those of AMPs
and AFPs.

3.5.4. CPL-Diff can Control the Length of the Generated Peptide
Sequence

Since our CPL-Diff additionally introduces an attention mask
during training (Part 2.2.1), we can actually achieve the goal of
having our CPL-Diff output a specified sequence length by using
an attention mask. In this part, we will focus on the performance
of CPL-Diff in controlling the length of the generated sequences.

CPL-Diff Controls the Length of the Generated Sequence Through
an Attention Mask: 'To explore how CPL-Diff carries out the con-
trol of the length of the generated sequence, we let CPL-Diff gen-
erate an AMP sequence of length 24. The attention weight matrix
of CPL-Diff was extracted while processing the last time step. All
the obtained attention weight matrices were then summed up for
global interpretation. This is shown in Figure 7. We can see that
the start marker CLS and the end marker EOS have higher atten-
tion scores than all the others, indicating that our CPL-Diff can
correctly understand the need to control the length of the gener-
ated sequence and add these two markers at the right locations.
We can also find some attention scores near the diagonal, indi-
cating that our CPL-Diff can understand the importance of the
relative position of amino acids for peptides. And we can also see
that the attention score between leucine (L,,, i.e., the 14th amino
acid in the sequence is L) and proline (P;s) is higher relative to
the rest of the amino acid combinations that are not on the di-
agonal. The leucine residues, which have the ability to form hy-
drogen bonds, and the proline residues, which have hydrophobic
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Figure 7. Visualization of the sum of all the attention weight matrices extracted from CPL-Diff. The bluer the color and the smaller the area of the circle
indicate a lower attention score. Redder colors and larger circles indicate higher attention scores. <C> denotes the start marker CLS and <E> denotes

the end marker EOS.

properties, may make an important contribution to the confor-
mational stability of the AMP, especially when there are syner-
gistic hydrophobic interactions to enhance its linkage integrity.
Taken together, these results suggest that CPL-Diff not only con-
trols the length of the generated sequence, but also has the ability
to generate peptides with stable conformations within a limited
length range.

CPL-Diff Generates New Peptide Sequences that Strictly Corre-
spond to the Number and Length of Real Peptide Datasets: In part
3.5.1, since the baseline model does not have the ability to con-
trol the length of the generated sequences. Therefore, for a fairer
comparison, we chose to let CPL-Diff simulate randomly deter-
mining the length of the generated sequences. And in that part,
in order to further evaluate the ability of CPL-Diff in modeling

Adv. Sci. 2025, 12, 2412926 2412926 (17 of 23)

complex biomolecular structures, we let CPL-Diff generate new
polypeptide sequences with lengths and quantities identical to
the three real polypeptide sequences, respectively. And the gen-
erated peptide sequences are compared with the real peptide se-
quences. The guide strengths used to generate the three polypep-
tide sequences are consistent with those mentioned in part 3.5.1.

The results are shown in Table 6 and Figure 8. With strict
agreement in length and number, the AMPs and AFPs gener-
ated by CPL-Diff had lower instability scores and lower similar-
ity scores. As for the physicochemical properties, the AMPs and
AFPs generated by CPL-Diff are not only better than the real
AMPs and AFPs in terms of isoelectric point, charge, hydropho-
bicity, hydrophobic moment, and aromaticity, but also have a
smaller molecular weight than the real AMPs and AFPs. As for
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Table 6. The model generates a comparison of results with quantities and
lengths that are identical to those of real peptides. Where the left side of the
slash indicates the results for real peptides and the right side of the slash
indicates the results for CPL-Diff generated peptides. “Activate” indicates
the proportion of the generated sequence predicted to be active.

Model Perplexity Instability Similarity Activity
Antimicrobial 15.3703/10.6080  41.6195/40.0444  —/32.3530  —/0.9646
Antifungal 14.6803/10.1577 41.5572/37.6440 —/32.7490 —/0.8841
Antiviral 17.7406/13.2622  46.0613/44.0303  —/27.2057  —/0.7623

AVPs, although the AVPs generated by CPL-Diff had higher in-
stability scores than the real AVPs, the lowest similarity scores
were achieved. In terms of physicochemical properties, although
the isoelectric point and charge are not as high as those of real
AVPs, the lower quartile of hydrophobicity is higher than that of
real AVPs, as well as the maximum point of hydrophobicity mo-
ment, and the upper quartile and maximum point of aromaticity
are higher than that of real AVPs, whereas in terms of molecular
weights of AVPs, although the upper quartile and the maximum
point of the molecular weights of AVPs generated by CPL-Diff are
higher than that of real AVPs. quartile points were slightly higher
than the real AVPs, their median and lower quartile points were
lower than the real AVPs. The above results further demonstrate
that CPL-Diff not only has the ability to simulate the structure of
complex biomolecules, but also has the ability to generate pep-
tides that are more active, easier to synthesize and more novel.

pl

www.advancedscience.com

CPL-Diff Possesses Strong Generalization Capabilities: Peptides
of different lengths will have different physicochemical proper-
ties and may have different mechanisms of action, modes of ac-
tion, and effects. And in practical applications, it may be neces-
sary to generate peptides with specific lengths for specific infec-
tion scenarios.*® And theoretically, the distribution of all data
is close to the standard Gaussian distribution after a certain de-
gree of diffusion operation. In other words, an initial Gaussian
noise would theoretically correspond to peptide sequences of all
lengths. To further explore the flexibility and creativity of CPL-
Diff, we choose to let CPL-Diff generate peptide sequences of
different lengths under the same initial noise. And the random
noise used in the denoising process for generating sequences of
different lengths is all the same.

Taking AMP as an example, we select a part of the results to
show (Table 7), and the complete results for the other two pep-
tides and AMP are shown in Tables S4-S6 (Supporting Infor-
mation). It can be seen that CPL-Diff, i.e., with the same ini-
tial noise, still generates sequences that meet the length require-
ments. Moreover, as the length of the sequence increases, CPL-
Diff does not directly add amino acids to the end of the sequence
to form alonger sequence based on a shorter sequence, but rather
adds amino acids to the existing amino acids after some modifica-
tions. For example, for a polypeptide sequence of length 5, it can
be seen that the AMP score is less than 0.5. However, when the
length of the sequence is increased by 1, not only is the amino
acid composition changed considerably, but also its AMP score
is greater than 0.5. This is probably due to the fact that there

Charge Hydrophobicity
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Figure 8. The model generates the distribution of physicochemical properties (including isoelectric point (pl), charge, hydrophobicity, hydrophobic
moment, aromaticity, and molecular weight) of peptides whose quantity and length are identical to those of the real polypeptide and the real polypeptide.
Each box-and-line plot is divided into three sections, AMP, AFP, and AVP. Real peptides are shown on the left side of each section, and CPL-Diff-generated
peptides are shown on the right side.
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Table 7. CPL-Diff results of generating AMP sequences of different lengths with the same initial noise. SAMP denotes the AMP score obtained by the
prediction tool on top of CAMPR4. SAMP < 0.5 indicates that the prediction is non-AMP. SAMP > 0.5 indicates that the prediction is AMP.

Sequence Length  Sayp  Instability pl Charge  Hydrophobic ~ Aromaticity ~ Molecular
moments weights
MVGRA 5 0.49 —-8.98 13.5508 1.99 0.7137 0 531.68
RVRRVR 6 0.6 103.8 13.8633 4.99 0.5682 0 840.04
RVWRVRI 7 0.56 8.5714 13.7969 3.99 0.3972 0.1429 983.22
RVRIVRIRRV 10 0.69 57.79 13.9141 5.99 0.5413 0 1321.67
RVRIVRIRRVR 11 0.71 53.4455 13.9551 6.99 0.5070 0 1477.85
GVGIVKIGRILGRGR 15 0.95 —8.0467 13.8008 4.989 0.7121 0 1549.92
WVGIVKIVRVLGRGRR 16 0.96 6.2313 13.8633 5.989 0.7454 0.0625 1863.31
GVLSALIGAIAGAGHHAHSLIKRK 24 0.96 9.0167 13.5664 4.114 0.3144 0 2376.82
GVLSALIGAIAGAGKHAHSAAKYKH 25 0.97 —3.984 11.0527 4.112 0.3191 0.04 2427.82
GVLSKLIGKIAGAGKKAASSAKKKIS 26 1 —2.5692 13.2656 7.986 0.4888 0 2511.08
GVLSTKIGSIAGAGASAASSILSKISKSCLC 31 0.98 27.8774 10.4277 3.68 0.3645 0 2880.4
SVCSCKISSILGCICPCTSSSVCSISGICVKC 32 0.9 49.2375 7.9097 1.757 0.2501 0 3170.89
SVCSCKICSILGPCCPCTSSSVCSISGICVKYC 33 0.87 39.9273 7.8312 1.601 0.2150 0.0303 3334.09
SVCIAKIPSILGPHHPCHSSIKYCISGHGLKIGSRKVCKR 40 0.93 28.78 10.5862 7.536 0.3609 0.025 4311.2
KVCIAKIPSILGPHHPCNSSIKYCISGKGLKIGSRKVCCRK 41 0.94 8.7366 10.6073 9.298 0.3663 0.0244 4423.44
KVCIAKIGSILGNGHPCNSSIKYCISGAGVKIGGRKGCCRKW 42 0.98 0.9762 10.4775 8.256 0.3677 0.0476 4363.26
KKKIAKIGSIAGVGAGGTGSIVGSIAGAGVGIGGAIGGLIGKGIKCAC 48 0.88 —1.6417 10.9800 6.679 0.3026 0 4194.05
KKKIAKIGSIAGGGAGGAGSIVGSIAGAGVGIGGAIGGLIGKGIKKAKK 49 0.9 —1.8694 13.3125 9.985 0.3260 0 4300.18
MKPIAKIGSIAGAGAGATGSIVGSIAGAGVGIGGAIGGLIGAGIKKADKK 50 0.79 —13.94 11.3740 5.987 0.2827 0 4388.21

are fewer real AMPs for length 5 than for length 6 (Figure S2,
Supporting Information), and that a short sequence’s exploration
space would be smaller than for longer sequences. This would
somewhat make CPL-Diff relatively less likely to generate AMP
sequences of length 5. However, overall, this behavior suggests
that CPL-Diff may have some intelligence and learning ability to
generate more complex and diverse AMP sequences.

We can also find that its instability score does not increase with
the length of the sequence, i.e., there is no fixed pattern. For ex-
ample, the sequence of length 6 has an instability score of 103.8,
while the sequence of length 50 has an instability score of -13.94.
This is because the stability of a polypeptide is influenced by a
combination of factors rather than being mainly determined by
the sequence length to determine it. As well as due to the com-
plexity of biomolecular systems, CPL-Diff’s results may still have
some errors and uncertainties. However, it also shows that CPL-
Diff has taken into account a variety of factors affecting the stabil-
ity and is able to model the complex relationship between these
factors to a certain extent.

3.5.5. Simulated Docking Experiment

To evaluate the ability of CPL-Diff to capture key structural fea-
tures of peptides and to further demonstrate the feasibility of
CPL-Diff, we use ESMFold!?!] to predict the structure of CPL-Diff
generated sequences. Specific targets are then selected for sim-
ulated docking experiments. And combined with attention visu-
alization for quantitative analysis. We use the ZDOCK tool”?! to
perform docking and evaluate the docking scores. The docking
results are then visualized using the pymol open source version
(v3.0.0).

Adv. Sci. 2025, 12, 2412926 2412926 (19 of 23)

For the AMP, we chose lipopolysaccharide!”?! from the bacte-
rial outer membrane as the target protein for molecular dock-
ing. We let CPL-Diff generate an AMP sequence with sequence
length 10 and perform mock docking experiments. The docking
results are shown in Figure 9a. We can see that the combina-
tion of isoleucine (I) at the second position and tryptophan (W) at
the fourth position (I,,W,) has the highest attention score. Both
isoleucine (I) and tryptophan (W) are hydrophobic and a strong
hydrophobic interaction may be formed between them. This in-
teraction helps in the localisation and penetration of the AMP
in the bacterial membrane, thus helping the arginine (R) at the
third position to contact the target protein. And for (I5,K;), we can
find that the lysine (K) at the seventh position makes contact with
the hydrogen bond of the target protein. This may be because the
combination of lysine (K), although hydrophilic, with isoleucine
(I), which is hydrophobic, may help the AMP tolocalise and pene-
trate the cell membrane. Also we can see that the lysine (K) at the
sixth position makes a non-polar contact with the target protein.
For (Wg,R,,) it can be seen that a hydrogen bond is formed be-
tween these two amino acids, which helps to increase the stability
of the peptide structure. The docking results without heatmaps
are provided in Figure S7 (Supporting Information).

For AFP, we chose 1,3-f glucan!’*l on the fungal outer mem-
brane as the target protein for molecular docking. We let CPL-
Diff generate the AFP sequence with sequence length 15 and per-
form mock docking experiments. The docking results are shown
in Figure 9b. It can be seen that (L,5,K;,) and (L,,K,,), which
have the highest attention, are a combination of leucine (L),
which is hydrophobic, and lysine (K), which is hydrophilic and
positively charged. This combination may render the AFP am-
phiphilic, allowing the antifungal peptide to be stable in an aque-
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Figure 9. Quantitative analysis of docking of peptide sequences generated by CPL-Diff. The structures corresponding to the generated peptide sequences
were predicted using ESMFold and docking was simulated using ZDock. a) Docking quantification of AMP sequences generated by CPL-Diff. b) Docking
quantification of AFP sequences generated by CPL-Diff. ¢) Docking quantification of CPL-Diff generated AVP sequences. (a), (b) and (c) The left half
shows the docking results visualized using pymol, where the bottom right corner is the docking score given by ZDock. The right half shows the extracted
attention weight matrix visualization. Here, only the sequence part is visualized, ignoring the start marker, the end marker, and the part after the end
marker. Thick green lines indicate residues of the peptide and thin orange lines indicate residues of the target protein.
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ous environment and to interact with fungal cell membranes.
Hydrogen bonds are formed between (I5,K,), which could help
the AFP maintain a stable structure. Isoleucine (I) at the ninth
position and glycine (G) at the tenth position both make non-
polar contacts with the target protein. The docking results with-
out heatmaps are provided in Figure S8 (Supporting Informa-
tion).

For the AVP, we chose the SARS-CoV-2 spike proteinl”! as
the target protein for molecular docking. We let CPL-Diff gen-
erate an AVP sequence with a sequence length of 20 and perform
mock docking experiments. The docking results are shown in
Figure 9c. It can be seen that the combination of phenylalanine
(F) at the eighteenth position and alanine (A) at the twentieth
position (F,g,A,,) has the highest attention score. Both pheny-
lalanine (F) and alanine (A) are hydrophobic and can form hy-
drophobic regions, which can promote the binding of AVP to tar-
get proteins. And the small side chain of alanine (A) makes it easy
to interact with other amino acids, thus promoting the forma-
tion of aromatic interactions. It can also be seen from Figure 9c
that the phenylalanine (F) at the eighteenth position has a non-
polar contact with the target protein. And both the phenylalanine
(F) at the eighteenth position and the alanine (A) at the twen-
tieth position formed hydrogen bonds with other amino acids.
And for (L,,,Gy,) and (L,,,Gy), both leucine (L) and glycine (G)
are hydrophobic, which can form hydrophobic regions and thus
promote the binding of AVP to target proteins. In contrast, both
leucine (L) and glycine (G) are non-polar amino acids, which may
allow them to form stable interactions in certain conformations.
For example, van der Waals forces between the aromatic ring of
leucine (L) and the small side chain of glycine (G) may increase
the stability of the peptide. And whereas the flexibility of glycine
(G) contributes to peptide folding and stabilization. The docking
results without heatmaps are provided in Figure S9 (Supporting
Information).

The above results show that the peptide sequences generated
by our CPL-Diff exhibit good binding ability and bioactivity in
docking experiments, which suggests that CPL-Diff has a high
predictive ability to generate peptides of high quality. And the
quantitative analysis of the simulation experiments helps to un-
derstand which amino acid pairs have important interactions in
the generation process, which is expected to reveal the key fac-
tors of peptide sequence design and provide important theoreti-
cal guidance for the design of peptides.

4, Conclusion and Future Work

This paper presents the DDPM-based CPL-Diff model for gen-
erating multiple peptide sequences. The model uses an atten-
tion mask to control the length of the generated sequences and
incorporates a protein language model to and use classifierless
bootstrapping to generate peptide sequences with three different
functions (antibacterial, antifungal, and antiviral). In contrast to
previous work, CPL-Diff is able to control the length of the gen-
erated sequences using only an attention mask, eliminating the
need to sample from a fitted polynomial distribution as initial
noise, thus broadening the space for exploration. The contribu-
tions of this work include the following:(1) The application of
the masking mechanism to the diffusion model used to generate
peptide sequences, which can control the length of the generated
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peptide sequences without relying on any distribution. (2) Using
multiple types of peptide sequences to train the model so that the
model captures the commonality of different peptides. And most
of the previous methods use a single type of peptide for training.
CPL-Diff can use conditional information to guide the genera-
tion of therapeutic peptides with different effects, thus reducing
the training cost. (3) Interpretability analysis of our model not
only provides a better understanding of how CPL-Diff controls
the length of the generated sequences, but also helps us under-
stand how CPL-Diff generates specific peptide sequences. It is
expected to reveal the key factors of peptide sequence design and
provide important theoretical guidance for the design of peptides.
However, due to certain limitations of Denoising Diffusion
Probabilistic Models (DDPMs), which require thousands of it-
erations to obtain final results, the generation process demands
substantial computational time. To address this, we propose to
employ more efficient sampling strategies in the reverse process,
such as Denoising Diffusion Implicit Models (DDIMs). Addition-
ally, the inherent class imbalance in our dataset’s polypeptide
types may lead to uneven learning across different categories in
CPL-Diff. To mitigate this issue, we intend to implement sam-
ple balancing techniques during the training phase, including
adjusting the mixing weights between conditional and uncondi-
tional generation to enhance generation propensity for rare target
categories. Furthermore, in subsequent research endeavors, we
intend to extend this methodology to encompass the generation
of alternative non-infectious peptides (e.g., anticancer peptides)
while enhancing its capability to simultaneously generate protein
sequences with specified lengths and their corresponding struc-
tural configurations through attention masking mechanisms.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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