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ABSTRACT

The development of transcriptome-wide association
studies (TWAS) has enabled researchers to better
identify and interpret causal genes in many diseases.
However, there are currently no resources provid-
ing a comprehensive listing of gene-disease asso-
ciations discovered by TWAS from published GWAS
summary statistics. TWAS analyses are also difficult
to conduct due to the complexity of TWAS software
pipelines. To address these issues, we introduce a
new resource called webTWAS, which integrates a
database of the most comprehensive disease GWAS
datasets currently available with credible sets of po-
tential causal genes identified by multiple TWAS soft-
ware packages. Specifically, a total of 235 064 gene-
diseases associations for a wide range of human dis-
eases are prioritized from 1298 high-quality down-
loadable European GWAS summary statistics. Asso-
ciations are calculated with seven different statistical
models based on three popular and representative
TWAS software packages. Users can explore associ-
ations at the gene or disease level, and easily search
for related studies or diseases using the MeSH dis-
ease tree. Since the effects of diseases are highly
tissue-specific, webTWAS applies tissue-specific en-
richment analysis to identify significant tissues. A
user-friendly web server is also available to run cus-
tom TWAS analyses on user-provided GWAS sum-
mary statistics data. webTWAS is freely available at
http://www.webtwas.net.

INTRODUCTION

First proposed by Gamazon et al. (1) in 2015, the
transcriptome-wide association study (TWAS) has emerged
as a powerful method for investigating associations be-
tween genetic variants and disease or disease-related com-
plex traits. TWAS utilizes a reference panel of genotype
and expression quantitative trait data (such as GTEx (2))
to fit a regression model predicting a target gene’s expres-
sion from genotype. This model is used to impute the genet-
ically regulated expression (GReX) of the gene from geno-
type data in a genome-wide association study (GWAS). The
imputed GReX values are then used to discover associa-
tions between the target gene and the phenotype of inter-
est. While genome-wide association studies (GWAS) have
also associated thousands of genetic variants with complex
traits, GWAS tends to identify many non-coding, intronic,
or intergenic variants which are difficult to interpret (3).
This problem is due to linkage disequilibrium (LD) between
causal and non-causal variants, which masks the effects of
causal variants on the phenotype of interest (4). TWAS
mitigates this interpretation issue by prioritizing potential
causal genes in addition to genetic variants (4,5).

More than a dozen TWAS software packages have been
developed in recent years, including PrediXcan (1), TWAS-
FUSION (6), UTMOST (7), FOCUS (8), MR-JTI (9),
TIGAR (10), moPMR-Egger (11), kTWAS (12) TisCoMM
(13) and others (14–18). Many developments in TWAS have
focused on improving GReX imputation accuracy to bet-
ter identify the genetic component of phenotypic variation.
Current methods typically use linear models, such as the
ElasticNet variable selection model in PrediXcan and the
Bayesian sparse linear mixed model (BSLMM) in TWAS-
FUSION. To mitigate the low sample size of many tis-
sues available in reference panels like GTEx (2), UTMOST
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(7) combines multiple single-tissue association scores into
a more powerful joint-tissue test to quantify overall gene-
disease association. PrediXcan, TWAS-FUSION and UT-
MOST are currently the three most popular TWAS tools by
citation count. Biologists have used these emerging TWAS
software packages to identify and interpret causal genes in
multiple diseases and domains, such as calcific aortic valve
stenosis (19), high-grade serous ovarian cancer (20), breast
cancer (21), macular degeneration (22) and schizophrenia
(23–26). Several TWAS software packages have also been
modified to utilize summary statistics (6,10,25), allowing bi-
ologists to analyze an increasing number of publicly avail-
able summary-level GWAS datasets (e.g. dbGaP).

Although TWAS has successfully been applied to dis-
cover causal genes in multiple diseases, several limitations
prevent TWAS from achieving the popularity of GWAS.
First, there is currently no resource providing a compre-
hensive listing of TWAS-discovered gene-disease associa-
tions based on published GWAS summary statistics. While
many resources are available for recording GWAS signif-
icant signals and variants (e.g. CAUSALdb (27), GWAS
Catalog (28), GWASdb (29), GWAS Atlas (30) and GRASP
(31)), only one such resource is available for TWAS findings
(TWAS-hub, http://twas-hub.org/). However, TWAS-hub
has significant limitations, as it only implements one TWAS
software package (TWAS-FUSION), only contains 342
disease/non-disease traits, and has not been updated since
September 2018. Second, the performance of TWAS de-
pends critically on choosing an appropriate causal (disease-
relevant) tissue as a reference panel, as GReX is highly
tissue-specific for a given disease (32). Many current TWAS
studies have arbitrarily selected a reference tissue such as
‘Whole Blood’, which limits their statistical power. Third,
the complexity of TWAS software pipelines poses a sig-
nificant barrier to biologists looking to conduct their own
TWAS analyses.

The webTWAS database was developed to address
aforementioned three issues. webTWAS applies the three
most common TWAS methods (PrediXcan/S-PrediXcan,
TWAS-FUSION, and UTMOST) to a curated collec-
tion containing the majority of published disease GWAS
datasets with complete summary statistics. The statisti-
cal models in webTWAS are drawn from three software
packages: the Elastic Net and Mashr models are from
the PrediXcan/S-PrediXcan software package; the BLUP,
Lasso, best-TWAS and Top1 models are from the TWAS-
FUSION software package, and the joint tissue GBJ model
is from the UTMOST software package. A convenient web
interface allows users to explore gene- and disease-level
disease association statistics across multiple studies, and
search for related diseases using the integrated MeSH on-
tology tree (33). Users can conveniently download the cu-
rated GWAS summary statistics as well as any search re-
sults found on webTWAS. To address the disease-associated
tissue specificity problem, tissue-specific enrichment anal-
ysis (32,34) is used to prioritize reference panels from the
top 1–3 most relevant tissues for a given disease. More-
over, to improve the convenience and accessibility of TWAS
to biologists, webTWAS provides a web server applica-
tion for promptly conducting custom TWAS analyses on
user-uploaded GWAS summary statistics. webTWAS is an

open access resource which is freely available at http://www.
webtwas.net/.

MATERIALS AND METHODS

GWAS curation and ontology mapping

A repository of 1298 high-quality disease GWAS summary
statistics is used to conduct TWAS analyses. The process
for curating GWAS data follows that of our previously
published resource CAUSALdb (27). Two categories of
publicly available GWAS summary statistics are collected
based on whether the cohort under investigation is from
UKBB or non-UKBB. UKBB cohort data is collected from
Neale Lab UKBB v3 (http://www.nealelab.is/uk-biobank),
Gene ATLAS (35) and GWAS ATLAS (30). Although these
sources are all derived from UKBB, their summary statis-
tics may vary due to differences in sample selection, qual-
ity control processes, and the type of association model
used. Non-UKBB cohorts include GWAS summary statis-
tics from public databases such as GWAS Catalog (28),
LD Hub (36), GRASP (31), PhenoScanner (37) and db-
GaP (38), as well as summary statistics curated from con-
sortium websites such as PGC (https://www.med.unc.edu/
pgc), MAGIC (https://www.magicinvestigators.org), SS-
GAC (https://www.thessgac.org) and JENGER (http://
jenger.riken.jp/en/).

Duplicate summary statistics from multiple publication
sources are removed by retaining only the source with the
most information available. Sources are included only if in-
formation regarding sample size, population, and the origi-
nal publication can be extracted. Population information is
mapped to the five super-populations (AFR, AMR, EAS,
EUR and SAS) from the 1000 Genomes Project (1KGP)
(39). The GTEx reference panel used by webTWAS con-
sists mainly of individuals of European ancestry (40,41),
and is not suitable for imputing GReX in non-European in-
dividuals due to variations in gene expression between dif-
ferent populations. We therefore only include GWAS statis-
tics from the European super-population (EUR) in the cur-
rent version of webTWAS. The diseases reported by each
GWAS are manually mapped to Medical Subject Headings
(MeSH) (33). To ensure accurate trait mapping, we include
MeSH labels based on additional information from the data
source, original publications related to the source, and re-
lated terms from the MeSH website (https://meshb.nlm.nih.
gov/search). For traits reported in the UKBB cohort, de-
scriptions from ICD10 (https://icd.who.int/browse10/2016/
en) and related notes found on UKBB Showcase are also
included as MeSH labels.

GWAS quality control

Summary-statistic based TWAS software packages usually
require several association statistics to be included for each
variant (such as variant coordinate, dbSNP ID, effect/non-
effect allele, P-value, beta coefficient and Z-score). To en-
sure that curated GWAS datasets match the input require-
ments of these TWAS software packages, we performed sev-
eral quality control steps on the raw GWAS data. First, we
inspect the coordinates and dbSNP ID (rsID) of each vari-
ant. If the rsID is missing, we extract it from dbSNP build
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151 using the variant coordinates. Variants are excluded if
the coordinates and rsID are both missing. Second, sum-
mary statistics must explicitly define both effect and non-
effect alleles. When only the effect allele is available, the non-
effect allele is inferred from biallelic sites in 1KGP. Variants
are excluded if the non-effect allele cannot be clearly de-
termined. Third, we discard summary statistics that do not
have both a P-value and beta coefficient, as a Z-score can
be calculated from the P-value and beta coefficient.

TWAS analysis models

To identify causal genes and variants, webTWAS uses
seven different statistical models based on three pop-
ular and representative TWAS software packages:
PrediXcan/S-PrediXcan (ElasticNet and Mashr mod-
els), TWAS-FUSION (best-TWAS, BLUP, LASSO, and
Top1 models) and UTMOST (joint tissue GBJ model).
S-PrediXcan is an extension of PrediXcan which allows
PrediXcan’s results to be computed from summary statistics
(25). Although the Top1 model is underpowered according
to previous studies (5,42), we have retained the Top1 model
as it is integrated in the TWAS-FUSION software package.
To remind users of this issue, we highlight the Top1 model
with the label ‘The Top1 model is underpowered according
to previous studies, and is included in webTWAS for
reference purposes’.

For each gene, each of the models is fit separately to each
of the 47 GTEx tissues as reference panels. A total of 47
× 6 + 1 association results are computed from these 47 ×
7 model-tissue pairs, as the joint tissue GBJ model from
UTMOST combines the results of all tissues into a single
score. The GReX imputed by each of these model-tissue
pairs is then used to identify potential causal genes from
GWAS summary statistics. We apply the default LD ma-
trix for SNPs provided by each TWAS software package.
In particular, the LD matrix for PrediXcan/S-PrediXcan,
TWAS-FUSION and UTMOST are all drawn from the
1000 Genomes Project. The Bonferroni-corrected signifi-
cance level is implemented as 0.05

nx to account for multiple
testing (43), where nx is the total number of genes. We use
default parameters for all TWAS software packages.

Disease-specific tissues

Although many studies (13,25,32,34,44,45) have shown that
gene expression is highly tissue dependent, an arbitrary ref-
erence tissue is often used in many TWAS analyses when the
causal tissue type is unknown. To address this issue, webT-
WAS uses the methodology from TSEA-DB (34) to identify
trait-specific tissues for a given target disease. First, gene-
based P-values are calculated by the Pathway scoring algo-
rithm (Pascal) (46). Disease-associated gene (TAG) sets are
defined as the genes with P-values less than a cutoff thresh-
old set to 0.05 (note that TSEA-DB also includes TAG sets
with thresholds of 0.01, 0.001 and 0.0001). For each TAG
set, the chi-square association test from deTS (32) is used to
select up to three tissues which are the most significant to
the target disease. TAG samples with fewer than 20 or more
than 3000 genes are excluded as they are not suitable for

analysis by deTS. Using this tissue-specific enrichment anal-
ysis pipeline, at least one disease relevant tissue was identi-
fied for all but 45 of the GWAS summary statistics datasets.

Web server for online TWAS analysis

In addition to listing precomputed associations, webTWAS
also includes a web server for users to conduct custom
TWAS analyses. This feature requires users to upload a
GWAS summary statistics file containing columns for SNP
rsID, effect allele, non-effect allele, and either P-values
or Z-scores. Users can select any of the 47 GTEx tissues
as reference panels. To select an appropriate disease rele-
vant tissue, we recommend applying deTS as described pre-
viously, or using pre-computed trait-specific tissues from
resources such as TSEA-DB. Users can run six differ-
ent statistical models based on two popular and represen-
tative TWAS software packages: PrediXcan/S-PrediXcan
(ElasticNet and Mashr models) or FUSION (best-TWAS,
BLUP, LASSO and Top1 models), and modify the default
P-value cutoff as needed.

Database and webserver structure

The back-end of webTWAS is developed in the Java-based
Spring Boot web framework. The front-end is developed
with the VueJs framework, and the user interface uses the
Element UI framework for VueJS. A MySQL database is
used to rapidly retrieve curated GWAS summary statistics
and TWAS-identified disease potential causal genes. The
web server for conducting custom TWAS analyses uses an
asynchronous design to ensure efficient scheduling of job
processes. Job processes are recorded and tracked in the
webTWAS user interface. The overall architecture of webT-
WAS is shown in Figure 1.

RESULTS

webTWAS statistics and ontology mapping results

We began by collecting disease GWAS summary statistics
for European super-populations across various resources
and publications (details in Materials and Methods). As of
the latest update to webTWAS in July 2021, this process has
curated 1298 high quality GWAS summary statistics in to-
tal, of which 864 belong to the UKBB cohort and 434 be-
long to non-UKBB cohorts.

A total of 235 064 pairs of disease/reference tissue and
potential causal gene associations are stored in webTWAS
(disease-gene pairings are considered distinct if identified
using different reference tissues). Among the 24 782 genes
with at least one disease association, the average number of
associations per gene is 9.49, while the average number of
reference tissues in which the gene is identified as significant
by any of the applied TWAS models is 5.20.

The 1298 diseases identified in the GWAS datasets in
webTWAS were mapped to 887 Medical Subject Headings
(MeSH) terms (one or more diseases can map to one or
more MeSH terms). We manually mapped reported traits
from each dataset to MeSH, accounting for some auxil-
iary information from the original studies and other de-
scriptions (details in Materials and Methods). webTWAS
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Figure 1. The overall architecture of the webTWAS platform. (A) Data processing workflow and query results. (B) Framework of online web server for
running custom TWAS analyses.

uses the same tree structure as the MeSH browser (https:
//meshb.nlm.nih.gov/treeView) to display reported diseases.

Database usage and interface

Users can search for results stored in webTWAS by query-
ing a disease, gene or chromosome region (Figure 2). If
searching for GWAS datasets by disease, users can query
by disease name or use the MeSH tree to explore related
categories of diseases (Figure 2A). GWAS summary statis-
tics and their originating studies are listed with their disease
names, sample sizes, population, number of cases/controls,
number of variants with summary statistics, publication in-
formation, source links, and mapped MeSH terms. We also
provide a download link for each curated GWAS summary
statistic. The downloaded statistics include variant coordi-
nates, dbSNP IDs, effect/non-effect alleles, P-values, beta-
coefficients (BETA) and Z-scores, as well as minor allele fre-
quencies (MAF) and standard errors (SE) if available from
the original source.

TWAS analysis results are presented with each
disease/reference tissue and causal gene pair listed
separately, including information such as the top 3 trait-
specific tissues identified by deTS, the potential casual gene,
the reference tissue used, and trait association statistics
for each of the seven statistical models implemented in
webTWAS. For the trait association statistics in particular,
the P-value, effect size, R2, and Z-score are provided for the
Elastic Net model from PrediXcan/S-PrediXcan, while the

P-value, effect size, and Z-score are provided for the Mashr
model of PrediXcan/S-PrediXcan (R2 is the GReX model’s
coefficient of determination, or the proportion of variance
in tissue gene expression accounted for by the model).
The P-value, R2 and Z-score are provided for the four
models from TWAS-FUSION, while the P-value is the only
available statistic available from UTMOST. A drop-down
list of tissues is provided on each disease webpage to allow
users to filter results by their tissue of interest.

The search interface of webTWAS utilizes the Elastic-
search search engine. If searching for causal genes by gene
or genomic location, users can query by gene name, ENSG
ID, or chromosome region (Figure 2C). Users can also
search the contents of any column (such as publication year
or PMID). Complete search results can be downloaded for
further analysis by clicking the ‘Export Data’ button.

Online TWAS analysis

The online TWAS analysis component of webTWAS is a
web-based server implementation of two popular TWAS
software packages (PrediXcan/S-PrediXcan and TWAS-
FUSION) for running TWAS analyses and identifying sig-
nificant disease-associated genes. This web server has an
easy-to-use interface which is freely accessible, does not re-
quire logins, and enables users to conduct highly customiz-
able TWAS analyses without requiring bioinformatics skills
or prior experience with TWAS software. The online anal-
ysis consists of four steps (Figure 3): (i) Uploading GWAS
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B

CA

D

Figure 2. Interface of webTWAS resource. (A) Interface for searching GWAS datasets/publications by disease and by browsing the MeSH ontology tree.
(B) Example of disease webpage, showing potential causal genes for type 1 diabetes. (C) Interface for searching TWAS associations by gene. (D) Example
of gene webpage, showing associated diseases for gene MAP3K6.

summary statistics data. (ii) Specifying parameters such as
email address (optional), job name, and P-value cutoff (de-
fault is 0.05). (iii) Selecting the reference tissue (default is
‘Whole Blood’, the most common reference tissue) and sta-
tistical model type (default is the Elastic Net model from
PrediXcan, a common and fast-running tool). (iv) Visual-
izing TWAS analysis results. Results can be downloaded as
a comma separated value (CSV) text file, and as a Manhat-
tan plot which is automatically generated by webTWAS to
visualize significant genes. Upon job submission, user will
receive email notifications when a job starts or ends. Users
can also retrieve TWAS analysis results using the job ID
provided by webTWAS.

Comparison to TWAS-hub

Compared with TWAS-hub, which is the only currently
available TWAS resource, webTWAS is a more compre-
hensive resource with multiple advantages: (i) TWAS-HUB
only has 342 traits (including non-disease traits such as
‘smoking status’), whereas webTWAS has curated 1298 dis-
ease GWAS datasets. (ii) TWAS-hub was last updated in
September 2018, whereas webTWAS will be updated bi-
monthly from July 2021 onwards. (iii) The number of gene-

trait associations in TWAS-hub is 75 951, while webT-
WAS has 235 064 gene-trait associations. (iv) TWAS-hub
only implements TWAS-FUSION, while webTWAS im-
plements three TWAS software packages (PrediXcan/S-
PrediXcan, TWAS-FUSION and UTMOST). (v) webT-
WAS uses tissue-specific enrichment analysis (deTS) to de-
termine which tissues are most strongly associated with
disease. This improves statistical power by accounting for
the TWAS tissue specificity issue (where GReX depends
strongly on the reference tissue). (vi) webTWAS presents the
first online platform for users to run custom TWAS analy-
ses.

DISCUSSION

TWAS is a powerful technique which is robust to the linkage
disequilibrium and context-dependent regulatory mecha-
nisms that prevent GWAS from accurately detecting causal
genes. However, the performance of TWAS is also limited
by factors such as gene co-expression, tissue selection bias,
and eQTL loci sharing by adjunct genes. Many publications
have sought to address these limitations by imputing GReX
for trans-eQTLs, imputing cross-tissue gene expression, and
integrating kernel machines into the calculation of trait
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A

Parameter specification

GWAS summary statistic data chosen

Reference tissue and statistical model selection

B

Significant genes

TWAS analysis result download

TWAS analysis result visualization

MHC region

Figure 3. Interface for online TWAS analysis. (A) Job submission interface. Users must specify parameters (red), upload GWAS summary statistics (light
green) and select a reference tissue/statistical model (purple). (B) Example of job results webpage showing table of significant genes (blue), link to download
CSV file (yellow) and Manhattan plot (dark green).

associations, among other methods. As each approach has
different performance and benefits depending on the genetic
structure, a method is needed to integrate results from mul-
tiple TWAS software packages.

The development of a single gene confidence score to in-
tegrate results from different TWAS models is a challeng-
ing and important problem. We investigated a potential ap-
proach where each model is weighted by its accuracy rel-
ative to the DisGeNET gene-disease score (47) as a gold
standard. DisGeNET is a popular GWAS resource which
collects genes and variants associated to human diseases,
and the DisGeNET score reflects the strength of a partic-
ular gene-disease association based on current knowledge
(47). However, the DisGeNET score is an in-house devel-
oped metric (47), and may not be a robust basis for estimat-
ing the accuracy of TWAS statistical models. Thus, the cur-
rent version of webTWAS does not include a DisGeNET-
like gene confidence score for summarizing the results of the
provided TWAS models. We will continue to explore meth-
ods for calculating such a score in the future.

Although TWAS has enjoyed substantial research atten-
tion and many TWAS software packages have been devel-
oped, the complexity of TWAS analysis pipelines is a sig-
nificant barrier to their use. In particular, no online tool
for conducting TWAS analyses is currently available. webT-
WAS provides a user-friendly online TWAS analysis plat-

form, which allows biologists to conveniently run six statis-
tical models from two TWAS software packages and visu-
alize the results in a Manhattan plot.

In addition, TWAS software packages also lack best
practices for users to follow. We propose that the design of
the webTWAS database pipeline and web server serves as
a basic set of best practices for conducting TWAS analyses.
However, more work is needed to improve the completeness
and reliability of webTWAS. Our future work will involve
integrating new and existing popular summary statistics-
based TWAS methods into the webTWAS pipeline, as well
as designing a DisGeNET-like gene confidence score to bet-
ter prioritize true causal genes. Any additional TWAS soft-
ware packages included into the database will also be inte-
grated with our web server to provide a standardized plat-
form for conducting the latest TWAS analyses using best
practices. Finally, newly available GWAS summary statis-
tics will be curated bimonthly for analysis by the webTWAS
pipeline, in order to maintain webTWAS as an up-to-date
resource for TWAS-identified causal genes.

DATA AVAILABILITY

PrediXcan, https://github.com/hakyim/PrediXcan/
TWAS-FUSION, http://gusevlab.org/projects/fusion/
UTMOST, https://github.com/Joker-Jerome/UTMOST/
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