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Abstract

Anticancer peptides constitute one of the most promising therapeutic agents for combating common human cancers. Using

wet experiments to verify whether a peptide displays anticancer characteristics is time-consuming and costly. Hence, in this

study, we proposed a computational method named identify anticancer peptides via deep representation learning features

(iACP-DRLF) using light gradient boosting machine algorithm and deep representation learning features. Two kinds of

sequence embedding technologies were used, namely soft symmetric alignment embedding and unified representation

(UniRep) embedding, both of which involved deep neural network models based on long short-term memory networks and

their derived networks. The results showed that the use of deep representation learning features greatly improved the

capability of the models to discriminate anticancer peptides from other peptides. Also, UMAP (uniform manifold

approximation and projection for dimension reduction) and SHAP (shapley additive explanations) analysis proved that

UniRep have an advantage over other features for anticancer peptide identification. The python script and pretrained

models could be downloaded from https://github.com/zhibinlv/iACP-DRLF or from http://public.aibiochem.net/iACP-DRLF/.
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Introduction

Cancer is devastating, as it kills millions of people around the

world every year [1–3]. How to treat cancer is a major medi-

cal challenge facing mankind. At present, the main methods

to treat cancer are radiotherapy, chemotherapy and targeted

therapy [4–7]. The idea behind these treatments is to kill cancer

cells, but they also damage normal cells [8]. These methods

are with obvious side effects and are unable to be afforded by

many patients [9]. Anticancer peptides (ACPs) constitute a class

of peptides that have been found to have anticancer effects,
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and are usually characterized by a sequence length of no more

than 50 amino acid residues [10]. Using ACPs to treat cancer

is a valuable potential alternative to current cancer therapies

[11]. The ACPs show some significant advantages over other

treatments for cancers: they are safer since they are natural

biological inhibitors; and they display higher selectivity toward

killing cancer cells due to their natural cationic properties to

selectively interact with the anionic cell membrane components

of the cancer cell [12]. In recent years, the ACPs therapy has

been extensively explored and applied in preclinical settings and

different stages of clinical trials against various types of tumors
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[13, 14]. Although the ACPs are safer than traditional broad-

spectrum drugs and have become amore competitive treatment

option than small molecules and antibodies, very few ACPs have

actually been found. According to data collected by CancerPPD,

a professionally maintained database of the ACPs, no >3000 ACP

sequences have been experimentally verified, and if the ACPs

with high sequence similarity are removed, only a few of them

are clinically available [15].

Given the therapeutic advantages of the ACPs and the rela-

tively few experimentally validated ACPs, it is critical to develop

computational methods for identifying the ACPs from the non-

anticancer peptides (non-ACPs) [16, 17], especially for large-

scale protein/peptides sequences generated by next-generation

sequencing technology. In the past few years there has been an

emergence of computational predictions of the ACPs based on

machine learning [18]. These methods typically transform the

amino acid sequences of anticancer and non-ACPs into vari-

ous numerical features, and then machine learning algorithms

are used to learn patterns from these features to distinguish

the ACPs from the non-ACPs [11, 16, 18–29]. Common feature

extraction methods include the use of dipeptide composition

(DPC) and binary profiles implemented in the web server AntiCP

developed by Tyagi et al. [15], Chou’s pseudo-amino acid compo-

sition (PseAAC) used by Hajisharifi et al. [19], protein relatedness

measurement parameters in the web server ACPP developed by

Vijayakumar and Lakshmi [20], PseAAC with the G-Gap dipep-

tide mode in the sequence-based tool iACP developed by Chen

et al. [21], amino acid composition (AAC) and physicochemical

properties in MLACP developed by Manavalan et al. [23], k-gram

in the web server AMPFun developed by Chung et al. [30] and

others [22]. In recent years, Wei et al. used feature selection

and feature fusion methods to develop ACPred-FL [24], PEPred-

suite [26] and ACPred-Fuse [25] with better accuracy. In 2020,

a new and better method named AntiCP 2.0 emerged [16]. In

contrast to the classical computational learning methods men-

tioned above, such as support vectormachine and random forest

(RF), Yi et al. proposed the use of a long short-term memory

(LSTM) neural network model in the ACP prediction method

ACP-DL [27]. Sequence feature extraction plays an important

role in the prediction of biological sequences [31]. Limited by

the short sequences of ACPs, it is not enough to just extract

more sequence statistical information for current predictors [25,

27]. Therefore, although these predictors have greatly promoted

the research of predicting ACPs, it is still necessary to develop

higher-performance ACPs prediction methods.

In the last few years, inspired by natural language processing

using deep representation learning [32, 33] and transfer learning

[34], sequence-based deep representation learning for proteins

and peptides have been emerging [35–42]. Typical examples of

such methods include ProFET, ProVec, unified representation

(UniRep), TAPE, ProGen and UDSMProt, which have been shown

to be powerful tools for protein function prediction, protein

structure prediction, reasonable protein design, protein–protein

interaction and GO prediction [36, 43–56]. The methods are usu-

ally based on an unsupervised or a semi-supervised training

learning by using extremely large data sets such as UniRef50

[57] and the Pfam protein families database [58], which include

tens of millions of sequences. The advantage of these methods

is that the sequence statistics can be extracted as completely as

possible, but it takes several weeks even months and plenty of

computing resources to get the embedded models. Fortunately,

by using the idea of transfer learning, these models can be used

as pretraining models to directly apply to new tasks such as ACP

prediction in this study [59].

In the work, we developed a new machine learning method

named iACP-DRLF to predict the ACPs from peptide sequences.

It was designed to use two kinds of deep representation learning

feature extraction technologies to convert the sequences

into feature vectors, and used the light gradient boosting

machine (LGBM) feature selection to determine the best feature

space. After optimizing, iACP-DRLF achieved good 5-fold cross-

validation and independent testing accuracy as compared to the

previously top two methods, i.e. ACPred-Fuse [25] and AntiCP

2.0 [16]. The two feature analysis approaches, including uniform

manifold approximation and projection for dimension reduction

(UMAP) [60] and shapley additive explanations (SHAP) [61], were

also used to explore the effect of different deep representation

learning features on the model performance. Executable and

easily-used python scripts are publicly accessible.

Methods and materials

The modeling flowchart is shown in Figure 1. First, the peptide

sequences were embedded into feature vectors using two pre-

trained deep representation learning embedding models (soft

symmetric alignment [SSA] and UniRep) to obtain two types

of features: SSA features (121D) and UniRep features (1900D).

Second, the features were fed into six machine learning models.

Third, the selected SSA and UniRep fusion features were used to

optimize the six models. Details of the modeling are described

in the following sections.

Benchmark dataset

Here, we used the updating benchmark datasets as used in

AntiCP 2.0 for modeling and for subsequent comparisons

convenient. One dataset is called the main dataset. It contains

861 experimentally validated ACPs and 861 non-ACPs, which

was split into two sub-datasets for 5-fold validation training and

independent testing. The other dataset was called the alternate

dataset consisting of 970 experimentally validated ACPs and 970

non-ACPs, which was also divided into a training subset and

independent testing subset. Both datasets could be downloaded

from https://webs.iiitd.edu.in/raghava/anticp2/. The ACPs in

both datasets were extracted from CancerPPD database [15].

The major difference of the two dataset was that the negative

samples of the main dataset were the antimicrobial peptides

(AMPs) whereas the negative samples of the alternate dataset

were random peptides, which were assumed to be non-ACPs.

Feature extraction

In contrast to the feature extraction methods such as iLearn

[62], BioSeq-Analysis [63], Pse-in-One [64] and iFeature [65], two

sequence deep representation learning embedding methods

were used in this study. The embedding procedure is illustrated

in Figure 1. They are available at https://github.com/tbeple

r/protein-sequence-embedding-iclr2019, https://github.com/

churchlab/UniRep. A NVIDIA GPU is required for sequence

embedding.

Pretrained SSA embedding

At first, the peptide sequences were fed into a pretrained lan-

guage model trained on the Pfam dataset. Then the encoded

outputs were used as three layers of stacked BiLSTM encoders

following a linear layer to get the final embedding matrix RL×121

for each peptide sequence, where L is the length of the peptide.

We called this model SSA embedding because it was trained
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Figure 1. Overview of the modeling. The peptide sequences were first embedded into feature vectors by using the pretrained SSA sequence embedding model and

UniRep embedding model and converted into 121 dimension (D) SSA feature vectors and 1900 dimension UniRep feature vector for each sequences. The SSA features,

UniRep features and fused SSA-UniRep features (2021D) were then used as input for KNN, LDA, SVM, RF, LGBM and NB predictors. Also, the six models were optimized

by feature selection methods. After comparison for cross-validation and independent test metric scores, the optimized model was attained.

and optimized by using a mechanism called SSA. We supposed

the presence of two RL×121 embedded matrices S1 and S2 of two

different peptide sequences with lengths L1 and L2, respectively.

S1 = [x1, x2, · · · , xL1] , (1)

where xi is a vector with 121D.

S2 = [y1, y2, · · · , ] , (2)

where yi is a vector with 121D.

The similarity of S1 and S2 was calculated using the

Equation (3).

ŝ = − 1
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aij = δij + εij − δijεij (6)

A =
L1

∑

i=1

L2
∑

j=1

aij (7)

The SSA embedding model was then fit by the above param-

eters of the sequence encoding via backpropagation with a

structure similarity loss function as described in reference [44].

The finally trained model will convert a peptide sequence to an

embeddedmatrix RL×121. An average pooling operation is used to

yield a 121D SSA feature vectors.
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Pretrained UniRep embedding

A sequence with L amino acid residues was first encoded using

one-hot encoding, and was then embedded into a RL×10 matrix.

Thematrix was fed into anmLSTM encoder as shown in Figure 1

to attain a R1900×L hidden state output as the embedding matrix.

After an average pooling operation, a 1900D vector called a

UniRep feature in this work was obtained. The mLSTM encoder

calculations involved the use of the Equations (8)–(14).

mt = (XtWxm) ⊗
(

ht−1Whm

)

(8)

ĥt = tanh (XtWxh + mtWmh) (9)

ft = σ
(

XtWxf + mtWmf

)

(10)

it = σ (XtWxi + mtWmi) (11)

ot = σ (XtWxo + mtWmo) (12)

Ct = ft ⊗ Ct−1 + it ⊗ ĥt (13)

ht = ot ⊗ tanh (Ct) (14)

where ⊗ indicates element-wise multiplication, ht−1 denotes

the previous hidden state, Xt is the current input, mt is the

current intermediate multiplicative state, ĥt is the input before

the hidden state, ft is the forget gate, it is the input gate, ot is

the output gate, Ct−1 is the previous cell state, Ct is the current

cell state and ht is the output hidden state. Also, σ is the sigmoid

function and tanh is the hyperbolic tangent function.TheUniRep

model was pretrained by performing next amino acid prediction

with cross-entropy loss minimization.

The fusion of features involved specifically combining 121D

SSA features with 1900D features to attain 2021D fused features.

For comparison, we also used non-embedding feature

extraction methods. The methods included AAC, DPC, PseAAC

and amphiphilic pseudo-amino acid composition (AmPseAAC),

which were generated by use of toolkit iFeature (https://github.

com/Superzchen/iFeature). The details of these methods are in

the reference [65]. Another peptides sequence feature extraction

method was also used, namely Word2Vec (W2V). The W2V

feature is generated by the biovec toolkit (https://github.com/

kyu999/biovec) [43].

Feature selection method

Feature selection is widely used to overcome model overfitting

and get the best and the most important feature space for mod-

eling optimization [66–70]. Feature selection methods such as

analysis of variance (ANOVA), minimum redundancy maximum

relevance (mrmr) andMaximum-Relevance-Maximum-Distance

(MRMD) [71, 72] have been proposed. Here,we used LGBM to seek

out the best feature space and rank the features in an order

according to the feature importance values. The LGBM feature

selection has been used for RNA pseudouridine site [33] andDNA

methycytosine site predictions [73, 74]. Here is the specific and

brief detail about LGBM feature selection. First, input the data

and its label into a LGBMmodel and fit themodel. Then with the

in-built function in the LGBM model, the importance value for

each feature could be obtained. Rank and sort the features from

the largest to the smallest according the feature importance

values.All featureswith importance value larger than the critical

value (e.g. the average feature importance value) are selected. A

code for LGBM feature selection is available at https://github.co

m/zhibinlv/iACP-DRLF.

Machine learning methods

Six widely used machine learning methods were adopted for

comparison. They were K-nearest neighbors (KNN) [75], linear

discriminant analysis (LDA) [76], support vector machine (SVM)

[73, 77–81], RF [82–87], LGBM [88] and naive Bayes (NB) [89].

Evaluation metrics and methods

To evaluate the model performance, we used total accuracy

(ACC), sensitivity (Sn), specificity (Sp) and Matthews correlation

coefficient (MCC) and area under receiver operating charac-

teristic curves (AUC). The given true positive sample number

(TP), true negative sample number (TN), false positive sample

number (FP) and false negative sample number (FN) were used

to compute the metrics using the equations [90–100].

Accuracy = TP + TN

(TP + TN + FP + FN)
(15)

Sn = TP

(TP + FN)
(16)

Sp = TN

TN + FN
(17)

MCC = TP × TN − FP × FN√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

(18)

The AUC is defined as the area under the receiver operating

characteristic curve (ROC). The ROC is drawn according to a

series of different cut-off values or thresholds, with true positive

rate as the ordinate and false positive rate as the abscissa.

K-fold cross-validation and independent testing are widely

usedmethods to evaluate machine learning model [53, 101–104].

K-fold cross-validation divides the original data into K groups

(K-fold), conducts a validation for each data subset and uses the

remaining K-1 data subsets as the training set. These K models

are evaluated in the validation set respectively. The final values

of the metrics of the models are averaged to obtain the cross-

validated values. The 5-fold (K=5) cross-validation method was

used in the current work. When carrying out independent test-

ing, a dataset completely different from the training dataset is

used. That is, all the samples are new to the trained model.

Results and discussion

Initial performance of models trained
on the main dataset

To find out the better embedding feature types, we first devel-

oped models based on six machine learning methods using

SSA andUniRep embedding features. The 5-fold cross-validation

scores of different models utilized different features are shown

in Figure 2. The average independent testing scores of these

models are listed in Supplementary Table S1. For 5-fold cross-

validation accuracy, it could be observed from Figure 2 thatmod-

els except for LDA based on UniRep features were with better

performance than models based on SSA features. For example,

the average ACC of KNN, SVM, RF, LGBM and NB with UniRep

features were 72.3, 75.5, 72.6, 74.3 and 64.8%, respectively, which

were over to models with SSA features by value of 3.64, 14.1,

4.38, 3.85 and 3.23%.Although the ACC value 61.5% of LDAmodel

with UniRep features was lower than that of model with SSA

feature by value of 6.94%. The UniRep features were better than

the SSA features for the ACPs and the non-ACPs identification,

whichwere further confirmed by the UMAP feature visualization
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Figure 2. Five-fold cross-validationmetrics comparison for six models based on SAA, UniRep, fused SSA+UniRep features and the top 250 selected SSA+UniRep fused

features (SSA+UniRep_250). The trained dataset was the main dataset. The six models were KNN, LDA, SVM, RF, LGBM and NB. The light green bars are for models

based on the SSA features, the blue bars are models based on the UniRep features, the yellow bars are for models based on the fused SSA+UniRep and the dark green

bars are for models based on the SSA+UniRep_250 features.

technology as shown in Figure 5A and B. Clearly, after UMAP fea-

ture reduction,most of the APCs samples represented by UniRep

could be apart from non-ACPs samples easily as displayed in

Figure 5B, whereas the ACPs and non-ACPs represented by SSA

were still all mixed up as shown in Figure 5A.

For further improving the model performance, we used the

feature fusion strategy and feature selection technology. We

fused the SSA features (121D) with the UniRep features (1900D)

to yield the SSA+UniRep features (2021D). Then the 2021D

SSA+UniRep features were fed into a LGBM model to compute

the feature importance values. According to descending sort

feature importance, the top 250 features (SSA+UniRep_250)

were selected for modeling. It meant the NO.1 feature was

with the largest feature importance value. The 5-fold cross-

validation scores of models used SSA+UniRep features and

SSA+UniRep_250 features are displayed in Figure 2 and the

values are listed in Supplementary Table S1. As we could see

from Figure 2 and Supplementary Table S2, the accuracy of

models except for RF and NB with SSA+UniRep features were

improved no >0.8%, whereas the ACC of RF increased by 1.6%

and the ACC of NB decreased slightly by 0.14%. That was, fusing

the two features type directly could improve some models’

performance, but it did not always work. The UMAP results

shown in Figure 5A–C confirmed that if the SSA features fusing

with the UniRep features, the ACPs and the non-ACPs would be

confounded again; but if the feature selection technology was

used, the ACPs and non-ACPs could be separated as displayed in

the UMAP figures (Figure 5D).

As compared with models with SSA and UniRep features,

the accuracy of models except for SVM with the selected

SSA+UniRep_250 features were with great improvement

by 2.5–19.8%. Obviously, the ACC of the LDA model with

SSA+UniRep_250 increased dramatically by 19.8% over that

without feature selection. It could be seen from Figures 2
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and 4 and Supplementary Table S2 that the LGBM model

using deep representation learning with SSA+UniRep_250

features were with the best 5-fold cross-validation score

(ACC=77.2%, MCC=0.547, Sp=81.5% and AUC=0.851) except

for Sn=72.8% and with the best average independent testing

scores (ACC=75.4%, MCC=0.509, Sn=78.3%, Sp=72.5% and

AUC=0.817).

The advantage of SHAP value is that the SHAP mean values

reflect the impact of the feature on the sample identification

or the contribution of the feature to the sample identification;

the larger the SHAP value is the more impact or contribution of

the feature to the sample identification [61]. As the SHAP fea-

ture importance analysis shown in Figure 4C, for LGBM model,

the 20 features with the top SHAP values included 18 UniRep

features and 2 SSA features. In terms of feature quantity, more

UniRep features than SSA features contributed to the ACPs and

the non-ACPs identification. In terms of feature SHAP values,

the UniRep_F1411 (the 1411st dimension UniRep feature) was

with larger mean SHAP value than the SSA_F111. It means that

UniRep_F1411 was with more impact on the ACPs and non-

ACP identification. The UniRep_F1411 could be more easily to

discriminate the ACPs from the non-ACPs than SSA_F111. Also,

the comparison between UniRep_F270 and SSA_F91 was simi-

lar. Both from the quantity and quality of the features list in

Figure 4C, the UniRep features played more important role than

the SSA features for ACPs identification.

Initial performance of models trained
on the alternate dataset

To further explore the advantages of peptides sequences deep

representation learning features,we trainedmodels on the alter-

nate dataset and used the models to identify the ACPs from the

random non-ACPs.

The 5-fold cross-validation scores of six models are shown

in Figures 3 and 4. The exact value of the cross-validation scores

and independent testing scores are listed in Supplementary

Table S2. It can be observed that models except for LDA with

UniRep features were better than those with SSA features. As

compared with models with SSA, UniRep and SSA+UniRep

feature, the cross-validation scores of AAC, MCC, Sn and AUC

of model with SSA+UniRep_250 feature increased obviously.

It means that LGBM feature selection technology effectively

enhanced the models performance, especially for KNN, NB and

LDA models (Figure 4). Similar to the main dataset, models with

SSA+UniRep_250 were with better performance for almost all

cases. The LGBM based model developed for alternate dataset

using SSA+UniRep_250 was with the best cross-validation

scores (ACC=92.9%, MCC=0.859, Sn=91.7% and AUC=0.980)

except for Sn=94.1%.

In the case of independent testing scores shown in Supple-

mentary Table S2, the LDA model based on UniRep was with

the poorest performance while models based SSA+UniRep_250

were with very close scores for ACC ranging from 89.9 to 92.1%,

MCC ranging from 0.791 to 0.944, Sn ranging from 87.6 to 89.1%

and Sp ranging from 90.9 to 96.2%. Unlike the SSA+UniRep_250

feature based LGBM model trained on the main dataset, the

LGBM model trained on the alternate dataset was not the top

model with the best independent test scores, although it has

fairly good test performance (ACC=91.7%), slightly lower than

the value 92.2% of RF model with SSA feature. To find out

the best model has been done by hyper-parameter searching

optimization and it would be discussed in another following

section.

The UMAP feature visualization for the alternate dataset is

shown in Figure 5. It shared the same commons and trends as

that for the main dataset. And the SHAP feature importance

analysis for the alternate dataset are shown in Figure 4D.The top

20 important feature for alternate dataset consisted of 19 UniRep

features and 1 SSA feature, which came in twentieth. Similar

to the analysis in Section Initial performance of models trained

on the main dataset, the results proved that the UniRep has an

advantage over SSA in identifying the ACPs from the non-ACPs

for the alternate dataset.

Comparison models with different feature types

To explore DRLF and non-DRLF features effect on ACPs identifi-

cation, four classical peptide sequences feature extraction tech-

nologies (AAC, DPC, PseAAC and AmPseAAC) and one non-deep

learning embedding technology (W2V) were used. The ACC and

MCC values of the developedmodels based on the above features

are shown in Tables 1, 2, 3 and 4. The best value of ACC and MCC

for every model based on different features are underline and in

bold. More metrics values are listed in Supplementary Tables S1

and S2.

In the case of models trained on the main dataset, the

cross-validation ACC of models (except for SVM and RF) using

SSA+UniRep_250 features were over those of models using

other features. Although the cross-validation MCC values of

RF used DPC and NB used AAC were better than LGBM used

SSA+UniRep_250, their ACC and MCC values were inferior to

the values of LGBM. For independent test on the main dataset,

the LGBM using SSA+UniRep_250 obtained the best ACC (75.4%)

and MCC (0.510).

In the case of models trained on the alternate dataset, all

the models using SSA+UniRep_250 were with the best cross-

validation ACC and MCC as compared with models using other

feature. For independent testing on the alternate dataset, the

models (except for RF and LGBM using) SSA+UniRep_250

had better accuracy. The RF using AmPseAAC was with

good ACC (91.7%) and MCC (0.835), but it was inferior to the

values (ACC=92.1% and MCC=0.844) of SVM model using

SSA+UniRep_250 and the LGBM model using UniRep.

Evidently, for most cases, the SSA+UniRep_250 feature was

with advantages over using other features for modeling; the

models based on DRLF features archived better cross-validation

accuracy and independent testing accuracy.

Model optimization and prediction
script implementation

To determine the optimal model for the ACPs prediction,

we used the feature increment strategy and the hyper-

parameter grid searchingmethod to obtain the best model using

SSA+UniRep_250 features. The feature increment strategy was

to construct 250 models by using the top 1, 2, . . . , 250 features.

For each model, its hyper-parameter searching was to use the

scikit-learn GridSearchCV module. The best KNN, LDA, SVM, RF,

LGBM and NBmodel trained and tested on the main dataset and

the alternate dataset are listed in Tables 5 and 6.

In the case of the main dataset, the LGBM using the

top 148 selected SSA+UniRep was with the best 5-fold

cross-validation scores (ACC=79.1%, MCC=0.583, Sn=77.0%,

Sp=81.2% and AUC=0.873) and the best independent testing

scores (ACC=77.4%, MCC=0.551, Sn=80.7% and Sp=74.3%).

In the case of models trained and tested on the alternate

dataset, the LGBM using the top 129 SSA+UniRep feature
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Figure 3. Five-fold cross-validationmetrics comparison for six models based on SAA, UniRep, fused SSA+UniRep features and the top 250 selected SSA+UniRep fused

features(SSA+UniRep_250). The trained dataset is the alternate dataset. The six models were KNN, LDA, SVM, RF, LGBM and NB. The light green bars are for models

based on the SSA features, the blue bars are models based on the UniRep features, the yellow bars are for models based on the fused SSA+UniRep and the dark green

bars are for models based on the SSA+UniRep_250 features.

Table 1. Five-fold cross-validation accuracy and sensitivity comparison for six machine learning models with different feature types based on
the main trained dataset

Model/metrics KNN LDA SVM RF LGBM NB

Features type ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC

AAC 71.8 0.439 64.2 0.286 64.8 0.321 74.6 0.498 73.3 0.466 66.6 0.340

DPC 61.2 0.247 70.2 0.404 73.3 0.471 75.9 0.521 73.3 0.467 66.6 0.333

PseAAC 70.9 0.418 64.1 0.283 63.4 0.274 74.1 0.486 71.7 0.434 62.1 0.251

AmPseAAC 71.6 0.434 65.1 0.304 64.8 0.300 73.7 0.479 74.1 0.482 62.6 0.261

W2V 71.1 0.424 64.0 0.280 66.4 0.328 69.3 0.387 70.9 0.420 61.1 0.231

SSA 69.8 0.396 66.1 0.323 66.1 0.329 69.6 0.395 71.6 0.433 62.8 0.257

UniRep 72.3 0.448 61.5 0.231 75.5 0.513 72.7 0.456 74.3 0.489 64.8 0.301

SSA+UniRep 72.4 0.448 62.2 0.245 75.9 0.521 74.3 0.490 75.0 0.502 64.7 0.298

SSA+UniRep_250 74.1 0.485 73.7 0.475 74.8 0.499 74.9 0.501 77.2 0.547 66.8 0.340

aThe best value of each column is underline and in bold; ACC unit: percentage(%).
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Figure 4. (A and B) Comparison of the 5-fold average accuracy of KNN, LDA, SVM, RF, LGMB and NB models used SSA, UniRep, SSA+UniRep and SSA+UniRep_250

features. (C andD) Feature importance analysis using the SHAPmethod. The blue and orange barsmean the feature impact or contribution for identifying the non-ACPs

and ACPs; the lager the bars’ length, the more important or the more contribution of the feature for the non-ACPs and ACPs identification.

Figure 5. Feature visualization by UMAP for dimension reduction. (A) is for the SSA features, (B) is for the UniRep features, (C) is for the SSA fused UniRep features and

(D) is for the top 250 features selected from SSA fused UniRep features.

was with ACC=94.5%, MCC=0.891, Sn=92.6%, Sp=96.4% and

AUC=0.984, which was superior to other models for the cross-

validation scores. But the LGBM model independent testing

scores (ACC=93.0%,MCC=0.862, Sn=89.6% and Sp=96.4%) were

inferior to the LDA model with the best test scores (ACC=93.5%,

MCC=0.872%, Sn=90.2% and Sp=96.9%). Considering the

robustness of the model in practical application, we intended to

choosemodelswith better cross-validation accuracy. In addition,

we used RF feature selection method to optimize the models.

The results are shown in Supplementary Table S3. On the whole

view, the LGBM feature selection based methods have superior

cross-validation performance over the RF feature selection
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Table 2. Independent test accuracy and sensitivity comparison for six machine learning models with different feature types based on the main
independent testing dataset

Model/metrics KNN LDA SVM RF LGBM NB

Features type ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC

AAC 70.9 0.419 66.3 0.327 63.8 0.294 73.0 0.460 72.5 0.450 67.6 0.358

DPC 63.7 0.297 69.1 0.383 71.5 0.430 72.8 0.456 69.8 0.397 70.3 0.408

PseAAC 69.2 0.389 65.4 0.309 64.3 0.290 74.0 0.481 73.2 0.465 66.1 0.334

AmPseAAC 68.8 0.383 64.4 0.290 65.0 0.305 75.0 0.502 75.0 0.502 66.5 0.342

W2V 68.8 0.382 63.0 0.260 64.7 0.294 67.9 0.358 69.8 0.397 63.3 0.273

SSA 68.0 0.361 68.4 0.367 65.8 0.320 67.0 0.339 69.1 0.383 64.0 0.282

UniRep 67.0 0.340 63.0 0.262 71.9 0.439 71.2 0.425 73.6 0.473 60.8 0.218

SSA+UniRep 68.0 0.360 63.3 0.267 72.3 0.446 69.9 0.399 72.3 0.448 61.2 0.226

SSA+UniRep_250 70.7 0.414 69.7 0.397 72.0 0.441 70.9 0.418 75.4 0.510 62.9 0.260

aThe best value of each column is underline and in bold; ACC unit: percentage (%).

Table 3. Five-fold cross-validation accuracy and sensitivity comparison for six machine learning models with different feature types based on
the alternate trained dataset

Model/metrics KNN LDA SVM RF LGBM NB

Features type ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC

AAC 88.3 0.769 86.7 0.736 86.5 0.733 88.8 0.778 90.7 0.815 86.3 0.729

DPC 64.1 0.344 83.6 0.673 88.1 0.765 87.3 0.746 87.5 0.752 84.5 0.690

PseAAC 88.5 0.771 86.5 0.731 85.0 0.704 89.0 0.782 89.7 0.796 82.4 0.660

AmPseAAC 88.8 0.777 87.2 0.745 84.6 0.698 89.4 0.789 90.2 0.804 82.1 0.653

W2V 79.4 0.592 78.5 0.571 84.6 0.694 84.8 0.699 84.5 0.690 67.4 0.361

SSA 85.2 0.704 88.9 0.779 88.6 0.776 88.3 0.769 90.8 0.818 81.4 0.629

UniRep 89.0 0.780 74.4 0.489 91.6 0.837 90.6 0.815 92.1 0.842 85.0 0.701

SSA+UniRep 88.6 0.744 79.9 0.598 92.0 0.844 91.2 0.825 92.1 0.844 84.8 0.696

SSA+UniRep_250 91.8 0.837 91.4 0.829 92.6 0.854 92.8 0.857 92.9 0.859 91.2 0.826

aThe best value of each column is underline and in bold; ACC unit: percentage (%).

Table 4. Independent test accuracy and sensitivity comparison for six machine learning models with different feature types based on the
alternate independent testing dataset

Model/metric KNN LDA SVM RF LGBM NB

Features type ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC

AAC 90.9 0.820 89.0 0.782 90.1 0.805 91.6 0.832 90.5 0.809 87.3 0.748

DPC 64.5 0.351 83.9 0.680 90.2 0.807 87.6 0.751 86.7 0.735 86.7 0.736

PseAAC 90.7 0.814 86.8 0.736 86.3 0.729 91.2 0.826 91.6 0.833 80.9 0.628

AmPseAAC 90.1 0.802 88.4 0.768 86.0 0.723 91.7 0.835 91.2 0.824 82.6 0.661

W2V 80.6 0.615 79.5 0.592 86.1 0.722 86.9 0.738 88.2 0.765 64.3 0.294

SSA 88.1 0.762 89.4 0.790 90.9 0.821 92.2 0.848 91.6 0.832 84.3 0.688

UniRep 89.5 0.792 75.6 0.513 91.7 0.839 90.9 0.821 92.1 0.844 86.7 0.734

SSA+UniRep 89.8 0.798 80.7 0.615 91.7 0.837 90.6 0.815 91.3 0.828 87.4 0.747

SSA+UniRep_250 91.7 0.836 91.1 0.824 92.1 0.844 91.2 0.826 91.7 0.835 89.5 0.791

aThe best value of each column is underline and in bold; ACC unit: percentage(%).

based methods. Thus, the LGBM models based on LGBM feature

selection were determined to be the finally used models in the

prediction script implementation.

The python source code of ourmethodnamed iACP-DRLF and

the pertained models are available at https://github.com/zhibi

nlv/iACP-DRLF. Our iACP-DRLF is a user-friendly and easily used

method. It runs with a FASTA format file as input and it outputs

the results in a CSV file. However, it requires a NVIDIA GPU

to accelerate the computation. We hope that iACP-DRLF would

become a useful tool for reader interest in ACPs prediction.

Comparison with the existing methods

We also compared our iACP-DRLF method to the existing meth-

ods for independent testing. The independent testing scores

for state-of-the-art ACP prediction came from references [16].

The results are shown in Table 7. It could be observed that

the ACC (77.5 and 93.0%) and MCC (0.55 and 0.86) of iACP-

DRLF outperformed the reported existing methods on the both

dataset. For the main dataset, all methods except for PEPred-

Suite were with higher sensitivity than specificity. The good

performance of iACP-DRLF tested on themain datasetwas due to
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Table 5. The optimized models (trained on the main dataset) metrics comparison

Model (parameters) Feature

Dims

5-Fold cross-validation Independent testing

ACC MCC Sn Sp AUC ACC MCC Sn Sp

KNN (k =5) 33 74.0% 0.480 72.4% 75.6% 0.797 73.7% 0.475 77.8% 69.6%

LDA (solver = ‘svd) 240 73.3% 0.465 73.5% 73.0% 0.816 73.1% 0.465 78.9% 67.3%

SVM (C=100.8, g = 10–2.4) 235 77.8% 0.557 76.9% 78.8% 0.853 76.3% 0.530 81.9% 70.8%

RF (Ntree=250,Nleaf = 2) 211 76.7% 0.536 72.2% 81.1% 0.841 73.4% 0.468 76.0% 70.8%

LGBM (Ntree=400,depth=12) 148 79.1% 0.583 77.0% 81.2% 0.873 77.5% 0.551 80.7% 74.3%

NB (priors =None) 16 67.4% 0.349 65.3% 69.6% 0.743 66.7% 0.334 63.2% 70.2%

aThe best value of each column is underline and in bold; (Dims: dimensions).

Table 6. The optimized models (trained on the alternate dataset) metrics comparison

Model (parameters) Feature

Dims

5-Fold cross-validation Independent testing

ACC MCC Sn Sp AUC ACC MCC Sn Sp

KNN (k =5) 220 92.8% 0.857 91.2% 94.5% 0.965 92.7% 0.857 89.6% 95.9%

LDA (solver = svd) 200 91.5% 0.830 90.3% 92.6% 0.964 93.5% 0.872 90.2% 96.9%

SVM (C=100.27, g = 10–1.87) 123 93.8% 0.877 91.4% 96.3% 0.979 92.0% 0.843 87.6% 96.4%

RF (Ntree=150,Nleaf = 2) 91 93.0% 0.861 89.7% 96.3% 0.978 92.5% 0.852 88.6% 96.4%

LGBM (Ntree=250, depth=9) 129 94.5% 0.891 92.6% 96.4% 0.984 93.0% 0.862 89.6% 96.4%

NB (priors =None) 86 90.9% 0.820 87.7% 94.1% 0.956 91.5% 0.832 87.6% 95.3%

aThe best value of each column is underline and in bold; (Dims: dimensions).

Table 7. Comparison of the independent testing metrics values for iACP-DRLF with state-of-the-art ACP predictors

Methods Main dataset Alternate dataset

ACC MCC Sn Sp ACC MCC Sn Sp

iACP-DRLF 77.5% 0.55 80.7% 74.3% 93.0% 0.86 89.6% 96.4%

AntiCP_2.0 75.4% 0.51 77.5% 73.4% 92.0% 0.84 92.3% 91.8%

AntiCP 50.6% 0.07 100.0% 1.2% 90.0% 0.80 89.7% 90.2%

ACPred 53.5% 0.09 85.6% 21.4% 85.3% 0.71 87.1% 83.5%

ACPred-FL 44.8% −0.12 67.1% 22.5% 43.8% −0.15 60.2% 25.6%

ACPpred-Fuse 68.9% 0.38 69.2% 68.6% 78.9% 0.60 64.4% 93.3%

PEPred-Suite 53.5% 0.08 33.1% 73.8% 57.5% 0.16 40.2% 74.7%

iACP 55.1% 0.11 77.9% 32.2% 77.6% 0.55 78.4% 76.8%

aThe best value of each column is underline and in bold.

its balanced sensitivity and specificity. For the alternate dataset,

the Sn (89.7%) of iACP-DRLF ranked 3rd, but its Sp (96.4%) ranked

top as shown in Table 7. The better specificity contributed more

than sensitivity to the good performance of iACP-DRLF as com-

pared to other methods. All the observation indicates that iACP-

DRLF is one of the machine learning based state-of-the-art ACP

predictors. In contrast to the non-DRLF used by other methods,

the DRLF used by iACP-DRLF was able to distinguish the ACPs

from the non-ACPs more accurately.

Conclusions

Overall, we have developed a new method named iACP-DRLF,

involving the use of a sequence-based deep representation

learning feature embedding method to predict potential ACPs.

This was the first time, to the best of our knowledge, that

the deep representation learning features were adopted for

ACPs prediction. By carrying out feature fusion and feature

selection, we obtained two optimal LGBM models for two

datasets respectively. Meanwhile, using the same training and

testing benchmark datasets, iACP-DRLF yielded ACC and MCC

exceeding those of the previous predictive models for the same

kind of task. With the use of deep representation learning

features, iACP-DRLF demonstrated a better ability to identify

ACPs from non-ACPs. The UMAP feature visualization and the

SHAP value feature importance analysis showed that UniRep

features played amore important role than SSA features for ACPs

prediction. The pretrained models and a user-friendly python

script for iACP-DRLF were also publicly available for readers.

Although the use of deep representation learning features

improved model prediction performance, the specific physical

meanings of these features are unclear. Also in order to obtain

these deep representation learning features quickly, a GPU-

accelerated computation resource is usually required. However,

these drawbacks do not keep us from continuing to apply this

method to peptide or protein sequence analysis tasks, such
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as protein subcellular localization, protein post-transcriptional

modification, prediction of signal peptides, artificial protein

design, etc. [105–110].

Key Points

• A new method called iACP-DRLF for predicting ACP

with high accuracy was developed.
• Unlike previously methods, iACP-DRLF used deep rep-

resentation learning feature embedding technology.
• The performance of iACP-DRLF was superior to the

methods used non-DRLF.
• The UMAP feature visualization and SHAP value anal-

ysis proved that the UniRep features were better fea-

tures for ACPs prediction.
• Themethod iACP-DRLFwas available as python script.

Supplementary data

Supplementary data are available online at Briefings in Bioin-

formatics.
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